998 resultados para SiO2 films
Resumo:
Lithium phosphorus oxynitride (LiPON), the widely used solid electrolyte for thin film microbatteries, is not compatible with the ambient humid temperatures. The reasons for reduction in ionic conductivity of LiPON thin films from 2.8 x 10(-6) Scm(-1) to 9.9 x 10(-10) Scm(-1) when exposed to air are analyzed with the aid of AC impedance measurements, SEM, XPS and stylus profilometry. Initially, particulate-free film surfaces obtained soon after rf sputter deposition in N-2 ambient conditions becomes covered with microstructures, forming pores in the film when exposed to air. LiPON films are deposited on Ti coated silicon in addition to bare silicon, ruling out the possibility of stress-related rupturing from the LiPON/Si interface. The reduction of nitrogen, phosphorus, and increased presence of lithium, oxygen and carbon over the film surface lowers the ionic conductivity of LiPON films when exposed to air. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.
Resumo:
Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm(-2) to 3 Wcm(-2) and N-2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, NE and doubly. Nd coordinated form. With increased presence of NE, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 x 10(-6) Scm(-1) for optimum rf power and N-2 flow conditions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An optical microscopy study of stress relief patterns in diamond-like carbon films is presented. Interesting stress relief patterns are observed which include the well-known sinusoidal type, branching pattern and string-of-beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on the film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.
Resumo:
Using Ru - SiO2 catalyst, the kinetics of methanation of carbon dioxide has been studied. In the temperature range of 320-460-degrees-C a simple power law model is found to predict experimental results with a good agreement over the range of variables studied.
Resumo:
The first fabrication of self-doped La1-xMnO3-delta films which are unique among the other La(1-x)M(x)MnO(3) (M = Ca, Ba and Pb) thin films showing giant magnetoresistance is reported. Ag-doped La0.7MnO3-delta films were grown on LaAlO3[100] substrates. These films show ferromagnetic and metal-insulator transition at 220 K and exhibit giant magnetoresistance (GMR) with Delta R/R(o) = 85% and Delta R/R(H) > 550%. Without silver addition these self-doped films are non-magnetic, Enhancement in GMR up to 8% has been observed in superlattices having alternate magnetic and non-magnetic La1-xMnO3-delta layers.
Resumo:
This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.
Resumo:
Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.
Resumo:
Thin films of Bismuth Vanadate Bi2VO5.5 (BiV) have been deposited on amorphous quartz and polycrystalline silicon substrates by r.f. sputtering technique and characterised for their structural and optical properties. The os-deposited films at room temperature are found to be amorphous and transparent over the spectral range of 0.55 mu m to 12 mu m. Post-deposition annealing at 400 degrees C in air shows the formation of the BiV crystalline phase. The optical constants namely refractive index. extinction coefficient and optical bandgap of both amorphous and crystalline films have been determined. The refractive index of the as-deposited film is around 2.4 at 0.7 mu m and drops to 2.26 at 1.56 mu m. The optical bandgap of the material has been determined from the computed values of the absorption coefficients.
Resumo:
Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.
Resumo:
Here we report on an x-ray specular reflectivity study of Ce-Si-Ge trilayers grown on Si(001) single-crystal substrate by ion beam sputtering deposition at various substrate temperatures. The electron-density profile of the trilayer as a function of depth, obtained from x-ray-reflectivity data, reveals an intermixing of Si and Ge. The x-ray-reflectivity data have been analyzed using a scheme based on the distorted-wave Born approximation, and the validity of the analysis scheme was checked using simulated data. Analyzed results provided information regarding interdiffusion in this system. We notice that although the Si-on-Ge interface is sharp, a Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface.
Resumo:
The La0.6Pb0.4MnO3(LPMO) thin films were in situ deposited at different oxygen partial pressure and at a substrate temperature of 630 degrees C by pulsed laser deposition. The films grown at lower oxygen partial pressures showed an increase in lattice parameter and resistivity and a decrease in the insulator-metal transition temperature as compared to the stoichiometric LPMO thin film grown at 400 mTorr. Further, these oxygen-deficient thin films showed over 70% giant magnetoresistance (GMR) near the insulator-metal transition temperature against the 40% GMR in the case of stoichiometric thin films. (C) 1995 American Institute of Physics.