892 resultados para Shadow and Highlight Invariant Algorithm.
Resumo:
This presentation describes a system for measuring claddings as an example of the many possible advantages to be obtained by applying a personal computer to eddy current testing. A theoretical model and a learning algorithm are integrated into an instrument. They are supported in the PC, and serve to simplify and enhance multiparameter testing. The PC gives additional assistance by simplifying set-up procedures and data logging etc.
Resumo:
Ant colonies in nature provide a good model for a distributed, robust and adaptive routing algorithm. This paper proposes the adoption of the same strategy for the routing of packets in an Active Network. Traditional store-and-forward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and dynamically deploying new protocols. The adoption of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized routing algorithm capable of adapting to network traffic conditions.
Resumo:
Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downwards, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves, characteristic of remotely generated swell, propagate faster than the surface wind momentum can also be transferred upwards. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. ECMWF ERA-40 data has been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to occur most often in the mid-latitude storm tracks where wind speeds are generally high. The wave-driven wind regime is found to be prevalent in the tropics where wind speeds are generally light and swell can propagate from storms at higher latitudes. The inverse wave age is also a useful indicator of the degree of coupling between the local wind and wave fields. The climatologies presented emphasise the non-equilibrium that exists between the local wind and wave fields and highlight the importance of swell in the global oceans.
Resumo:
Planning is a vital element of project management but it is still not recognized as a process variable. Its objective should be to outperform the initially defined processes, and foresee and overcome possible undesirable events. Detailed task-level master planning is unrealistic since one cannot accurately predict all the requirements and obstacles before work has even started. The process planning methodology (PPM) has thus been developed in order to overcome common problems of the overwhelming project complexity. The essential elements of the PPM are the process planning group (PPG), including a control team that dynamically links the production/site and management, and the planning algorithm embodied within two continuous-improvement loops. The methodology was tested on a factory project in Slovenia and in four successive projects of a similar nature. In addition to a number of improvement ideas and enhanced communication, the applied PPM resulted in 32% higher total productivity, 6% total savings and created a synergistic project environment.
Resumo:
This paper describes a project undertaken during 2001/2002 which developed a method for valuing hedgerows adjacent to the inland waterway network of Great Britain. The method enables the landowner, British Waterways, to manage their valuable environmental asset to achieve a good level of biodiversity and robust habitat balanced against the heavy amenity use the 3000 km canal network endures. Valuation techniques were developed using a combination of new and existing ecological indices for components of biodiversity, hedgerow structure and amenity, and synthesised into an index in an innovative combined approach. The resultant index was then applied to a sample 20 km section of hedge alongside the Grand Union Canal in Southeast England. The results obtained reflect the hedgerows' present value, and highlight factors that might improve or limit their future increase in value. The results from the case study application also demonstrate that there is a positive relationship between hedgerow structure and biodiversity, and that hedgerows in urban areas are less biodiverse and structurally sound than those in rural areas. Furthermore, there is a zone within rural areas influenced by the adjacent urban areas and/or higher amenity use. The paper concludes with an assessment of the approaches' strengths and weaknesses with a view to its compatibility with other hedgerow evaluations, such as HEGS, its use by other agencies or landowners, and to aid hedgerow management and future development. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.
Resumo:
Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.
Resumo:
A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
This paper addresses the problem of tracking line segments corresponding to on-line handwritten obtained through a digitizer tablet. The approach is based on Kalman filtering to model linear portions of on-line handwritten, particularly, handwritten numerals, and to detect abrupt changes in handwritten direction underlying a model change. This approach uses a Kalman filter framework constrained by a normalized line equation, where quadratic terms are linearized through a first-order Taylor expansion. The modeling is then carried out under the assumption that the state is deterministic and time-invariant, while the detection relies on double thresholding mechanism which tests for a violation of this assumption. The first threshold is based on an approach of layout kinetics. The second one takes into account the jump in angle between the past observed direction of layout and its current direction. The method proposed enables real-time processing. To illustrate the methodology proposed, some results obtained from handwritten numerals are presented.
Resumo:
Emergency vehicles use high-amplitude sirens to warn pedestrians and other road users of their presence. Unfortunately, the siren noise enters the vehicle and corrupts the intelligibility of two-way radio voice com-munications from the emergency vehicle to a control room. Often the siren has to be turned off to enable the control room to hear what is being said which subsequently endangers people's lives. A digital signal processing (DSP) based system for the cancellation of siren noise embedded within speech is presented. The system has been tested with the least mean square (LMS), normalised least mean square (NLMS) and affine projection algorithm (APA) using recordings from three common types of sirens (two-tone, wail and yelp) from actual test vehicles. It was found that the APA with a projection order of 2 gives comparably improved cancellation over the LMS and NLMS with only a moderate increase in algorithm complexity and code size. Therefore, this siren noise cancellation system using the APA offers an improvement in cancellation achieved by previous systems. The removal of the siren noise improves the response time for the emergency vehicle and thus the system can contribute to saving lives. The system also allows voice communication to take place even when the siren is on and as such the vehicle offers less risk of danger when moving at high speeds in heavy traffic.
Resumo:
In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.
Resumo:
Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and highlight X-ray diffraction as a new and powerful tool in our understanding of this process.