972 resultados para Sequence Detection
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.
Resumo:
Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.
Resumo:
Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.
Resumo:
Background Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
The Escherichia coli mu operon was subcloned into a pKK233-2 vector containing rat glutathione S-transferase (GST) 5-5 cDNA and the plasmid thus obtained was introduced into Salmonella typhimurium TA1535. The newly developed strain S.typhimurium NM5004, was found to have 52-fold greater GST activity than the original umu strain S.typhimurium TA1535/pSK1002. We compared sensitivities of these two tester strains, NM5004 and TA1535/ pSK1002, for induction of umuC gene expression with several dihaloalkanes which are activated or inactivated by GST 5-5 activity. The induction of umuC gene expression by these chemicals was monitored by measuring the cellular P-galactosidase activity produced by umuC'lacZ fusion gene in these two tester strains. Ethylene dibromide, 1-bromo-2-chloroethane, 1,2-dichloroethane, and methylene dichloride induced umuC gene expression more strongly in the NM5004 strain than the original strain, 4-Nitroquinoline 1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine were found to induce umuC gene expression to similar extents in both strains. In the case of 1-nitropyrene and 2-nitrofluorene, however, NM5004 strain showed weaker umuC gene expression responses than the original TA1535/ pSK1002 strain, 1,2-Epoxy-3-(4'-nitrophenoxy)propane, a known substrate for GST 5-5, was found to inhibit umuC induction caused by 1-bromo-2-chloroethane. These results indicate that this new tester NM5004 strain expressing a mammalian GST theta class enzyme may be useful for studies of environmental chemicals proposed to be activated or inactivated by GST activity.
Resumo:
Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.
Resumo:
Background Situational driving factors, including fatigue, distraction, inattention and monotony, are recognised killers in Australia, contributing to an estimated 40% of fatal crashes and 34% of all crashes . More often than not the main contributing factor is identified as fatigue, yet poor driving performance has been found to emerge early in monotonous conditions, independent of fatigue symptoms and time on task. This early emergence suggests an important role for monotony. However, much road safety research suggests that monotony is solely a task characteristic that directly causes fatigue and associated symptoms and there remains an absence of consistent evidence explaining the relationship. Objectives We report an experimental study designed to disentangle the characteristics and effects of monotony from those associated with fatigue. Specifically, we examined whether poor driving performance associated with hypovigilance emerges as a consequence of monotony, independent of fatigue. We also examined whether monotony is a multidimensional construct, determined by environmental characteristics and/or task demands that independently moderate sustained attention and associated driving performance. Method Using a driving simulator, participants completed four, 40 minute driving scenarios. The scenarios varied in the degree of monotony as determined by the degree of variation in road design (e.g., straight roads vs. curves) and/or road side scenery. Fatigue, as well as a number of other factors known to moderate vigilance and driving performance, was controlled for. To track changes across time, driving performance was assessed in five minute time periods using a range of behavioural, subjective and physiological measures, including steering wheel movements, lane positioning, electroencephalograms, skin conductance, and oculomotor activity. Results Results indicate that driving performance is worse in monotonous driving conditions characterised by low variability in road design. Critically, performance decrements associated with monotony emerge very early, suggesting monotony effects operate independent of fatigue. Conclusion Monotony is a multi-dimensional construct where, in a driving context, roads containing low variability in design are monotonous and those high in variability are non-monotonous. Importantly, low variability in road side scenery does not appear to exacerbate monotony or associated poor performance. However, high variability in road side scenery can act as a distraction and impair sustained attention and poor performance when driving on monotonous roads. Furthermore, high sensation seekers seem to be more susceptible to distraction when driving on monotonous roads. Implications of our results for the relationship between monotony and fatigue, and the possible construct-specific detection methods in a road safety context, will be discussed.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).