940 resultados para Seismic isolation
Resumo:
Natural ecosystems are increasingly exposed to multiple anthropogenic stressors, including land-use change, deforestation, agricultural intensification, and urbanisation, all of which have led to widespread habitat fragmentation, which is also likely to be amplified further by predicted climate change. The potential interactive effects of these different stressors cannot be determined by studying each in isolation, although such synergies have been largely ignored in ecological field studies to date. Here, we use a model system of naturally fragmented islands in a braided river network, which is exposed to periodic inundation, to investigate the interactive effects of habitat isolation and flood disturbance. Food web structure was similar across the islands during periods of hydrological stability, but several key properties were altered in the aftermath of flood disturbance, based on distance of the islands from the regional source pool of species: taxon richness and mean food chain length declined with habitat isolation after flooding, while the proportion of basal species increased. Greater species turnover through time reflected the slower process of re-colonisation on the more distant islands following disturbance. Increased variability of several food web properties over a 1-year period highlighted the reduced temporal stability of isolated habitat fragments. Many of these effects reflected the differential successes of predator and prey species at re-colonising the islands: even though larger, more mobile consumers may reach the more distant islands first, they cannot establish populations until the lower trophic levels have successfully reassembled. These results highlight the susceptibility of fragmented ecosystems to environmental perturbations. © 2013 Elsevier Ltd.
Resumo:
Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from membrane phospholipids and is believed to be the rate-limiting enzyme in the arachidonic acid pathway. We report herein the isolation of a 3 kb fragment of rodent genomic DNA containing part of the first intron, the first exon and 5'-flanking sequence. The start site of transcription was mapped by 5'-rapid amplification of cDNA ends and corroborated by ribonuclease protection assay. The gene has a TATAless promoter with no classical Sp1 binding sites or initiator element. A microsatellite series of CA repeats was noted in the 5'-flanking region of both the rodent and human promoters. Deletion constructs have been analysed for luciferase activity and confirmed promoter activity.
Resumo:
An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.
Resumo:
This paper presents a seismic response investigation into a code designed concentrically braced frame structure that is subjected to but not designed for in-plan mass eccentricity. The structure has an accidental uneven distribution of mass in plan resulting in an increased torsional component of vibration. The level of inelasticity that key structural elements in plan mass asymmetric structures are subjected to is important when analysing their ability to sustain uneven seismic demands. In-plan mass asymmetry of moment resisting frame and shear wall type structures have received significant investigation, however, the plan asymmetric response of braced frame type structures is less well understood. A three-dimensional non-linear time history analysis (NLTHA) model is created to capture the torsional response of the plan mass asymmetric structure to quantify the additional ductility demand, interstorey drifts and floor rotations. Results show that the plan mass asymmetric structure performs well in terms of ductility demand, but poorly in terms of interstorey drifts and floor rotations when compared to the plan mass symmetric structure. New linear relationships are developed between the normalised ductility demand and normalised slenderness of the bracing on the sides of the plan mass symmetric/asymmetric structures that the mass is distributed towards and away from.
Resumo:
Eight new microsatellite loci were isolated and characterized for the Natterer's bat Myotis nattereri from a microsatellite-enriched genomic library. The usefulness of these markers was assessed by screening a sample comprising 100 specimens collected from throughout the species range in Europe. Both moderately and highly polymorphic loci were identified with 3-17 alleles segregating per locus (mean 8.1 SE +/- A 0.048). No evidence for departure from HWE or linkage disequilibrium among loci was observed. These markers will provide a valuable addition to the molecular toolbox currently available for studies of population genetic structure, parentage and social organisation of M. nattereri and related species.
Resumo:
Nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) to patients with cystic fibrosis (CF) frequently results in chronic respiratory tract carriage. This is an increasing problem, adds to the burden of glycopeptide antibiotic use in hospitals, and represents a relative contraindication to lung transplantation. The aim of this study was to determine whether it is possible to eradicate MRSA with prolonged oral combination antibiotics, and whether this treatment is associated with improved clinical status. Adult CF patients (six male, one female) with chronic MRSA infection were treated for six months with rifampicin and sodium fusidate. Outcome data were examined for six months before treatment, on treatment and after treatment. The patients had a mean age of 29.3 (standard deviation=6.3) years and FEV(1) of 36.1% (standard deviation=12.7) predicted. The mean duration of MRSA isolation was 31 months. MRSA isolates identified in these patients was of the same lineage as the known endemic strain at the hospital when assessed by pulsed-field gel electrophoresis. Five of the seven had no evidence of MRSA during and for at least six months after rifampicin and sodium fusidate. The proportion of sputum samples positive for MRSA was lower during the six months of treatment (0.13) and after treatment (0.19) compared with before treatment (0.85) (P<0.0001). There was a reduction in the number of days of intravenous antibiotics per six months with 20.3+/-17.6 on treatment compared with 50.7 before treatment and 33.0 after treatment (P=0.02). There was no change in lung function. Gastrointestinal side effects occurred in three, but led to therapy cessation in only one patient. Despite the use of antibiotics with anti-staphylococcal activity for treatment of respiratory exacerbation, MRSA infection persists. MRSA can be eradicated from the sputum of patients with CF and chronic MRSA carriage by using rifampicin and sodium fusidate for six months. This finding was associated with a significant reduction in the duration of intravenous antibiotic treatment during therapy.
Resumo:
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.