1000 resultados para Segmentación de imágenes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ampliación de software dedicado al análisis de imágenes mediante la introducción de nuevas opciones en el procesamiento de video digital, mejoras en la interacción con el usuario. Para ello se ha estudiado el funcionamiento de la aplicación, integrando el lenguaje Python como herramienta de gestión y ejecución de la aplicación. En esta parte de la aplicación se ha integrado: - Traducción de la UI a una versión castellana. - Modificación y eliminación de cualquier filtro añadido para el procesamiento de video, no únicamente el último. - Descripciones de puntero y en la barra de estado de elementos de la aplicación. - Iconos en la barra de herramientas de los filtros añadidos más importantes. Por la otra parte, la del tratamiento digital de video, Avisynth se dispone como el eje de estudio, el cuál ejecuta sobre lenguaje de bajo nivel (C++) las operaciones pertinentes a través de librerías de enlace dinámico o *.dll. Las nuevas funcionalidades son: Convolución matricial, filtro de media adaptativa, DCT, ajustes de video generales, en formato RGB o YUV, rotaciones, cambios de perspectiva y filtrado en frecuencia. ABSTRACT. Improvement about a digital image processing software, creating new options in digital video processing or the user interaction. For this porpuse, we have integrated the application language,Python, as the tool to the application management and execution. In this part of the application has been integrated: - Translation of the UI: Spanish version. - Modifying and removing any added filter for video processing, not just the last. - Descriptions for the pointer and the status bar of the application. - New icons on the toolbar of the most important filters added. On the other hand, Avisynth was used tool for the digital video processing, which runs on low-level language (C ++) for a quickly and to improve the video operations. The new introduced filters are: Matrix Convolution, adaptive median filter, DCT, general video settings on RGB or YUV format, rotations, changes in perspective and frequency filtering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La importancia de la Biomasa a nivel mundial, ha llevado a que más de 130 países celebren el protocolo de Kioto sobre el cambio climático dictaminando como objetivo la reducción de las emisiones de seis gases de efecto invernadero y tres gases industriales fluorados, así como la incorporación de la fijación del CO2 como un objetivo dentro de los criterios de gestión de bosques. Entre las metodologías no destructivas para estimación de biomasa, aquí desarrolladas se describen tres técnicas que varios autores han propuesto para calcular los valores de biomasa y carbono, tal como el uso de ecuaciones alométricas por medio de la medición de variables dasométricas como el DAP, la aplicación de la teoría de huecos (v.g. DHP, TRAC), y la obtención de biomasa mediante información radar. Las imágenes radar proporcionan una clara ventaja al poder ser adquiridas en cualquier momento del día e independientemente de las condiciones climatológicas. Se han adquirido dos imágenes de sensores diferentes, tal como ALOSPALSAR que trabaja en la banda L y RADARSAT-2 que trabaja en la banda C, se aplica la metodología descrita por Saatchi et al. (2007), desarrollando los algoritmos semiempíricos propuestos para la estimación de biomasa del fuste (Ws) y biomasa de la copa (Wc), obteniendo los coeficientes a partir de información adquirida en campo. ABSTRACT The importance of biomass worldwide has led to more than 130 countries to celebrate the Kyoto Protocol, aimed at reducing emissions of six greenhouse gases and three fluorinated industrial gases, and the incorporation of the fixation of CO2 as an objective within forest management criteria. Among the non-destructive methods for estimating biomass, three techniques were developed. These have been described by some authors, as the use of allometric equations by measuring forest variables such as the DAP, the application of the Gap Theory (e.g. DHP, TRAC), as well as deriving biomass by radar information. The radar images provide a clear advantage since they can be gathered at any time of the day regardless of the weather conditions. For this purpose, two radar products have acquired from different sensors, such as ALOSPALSAR operating on L frequency band and RADARSAT-2 operating on C frequency band. The methodology applied in this work is described in Saatchi et al. (2007), that develop semiempirical algorithms for estimating stem biomass (Ws) and crown biomass (Wc). The corresponding coefficients are determined by means of regression procedures using field information derived from allometric and radiation measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente artículo pretende describir el desarrollo de una nueva metodología no invasiva de documentación digital de petroglifos y pinturas rupestres pertenecientes al paleolítico, a través de técnicas y herramientas del tratamiento digital de imágenes para optimizar materiales y tiempos en la obtención de información gráfica, representativa y de precisión. Abstract: This article aims to describe the development of a new non-invasive methodology, through techniques and tools of digital image processing to optimize materials and time in obtaining graphical representative and accurate information from petroglyphs and rock paintings belonging to Paleolithic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuevas tecnologías aplicadas a la arqueología

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente Proyecto de Fin de Carrera viene motivado por el conocimiento de la existencia de fenómenos erosivos en la zona de Orgaz - Los Yébenes. El objetivo es el estudio de la distribución de procesos erosivos en el área citada y la relación de las zonas en que estos se producen, con las propiedades analíticas del suelo. La pérdida de suelo por erosión inducida por el hombre, supera a la erosión natural en varios órdenes de magnitud, por lo que cabe considerarla como un grave problema ambiental que propicia la pérdida de fertilidad. Esto es debido a que en los ecosistemas agrarios, sobre todo en cultivos de secano,se han aplicado manejos que han acelerado las tasas de erosión naturales. En los cultivos de secano más extendidos, se ha eliminado toda la cubierta vegetal, se ha compactado el suelo y esquilmado la materia orgánica. Como consecuencia de estos manejos poco respetuosos con el suelo, las tasas de erosión son mayores a las tasas de formación y constituyen un poderoso factor de desertificación. La respuesta erosiva de un determinado ambiente o uso del suelo suele ser bastante diferente según la época del año en la que se produzcan las lluvias,su intensidad y duración, el estado de la vegetación, el tiempo en el que el suelo permanece desnudo tras el levantamiento de la cosecha, etc.… Del uso y gestión que se haga del suelo y de la cubierta vegetal dependerá que, con el tiempo, la erosión potencial no se convierta en erosión actual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las nuevas tendencias de compartir archivos multimedia a través de redes abiertas, demanda el uso de mejores técnicas de encriptación que garanticen la integridad, disponibilidad y confidencialidad, manteniendo y/o mejorando la eficiencia del proceso de cifrado sobre estos archivos. Hoy en día es frecuente la transferencia de imágenes a través de medios tecnológicos, siendo necesario la actualización de las técnicas de encriptación existentes y mejor aún, la búsqueda de nuevas alternativas. Actualmente los algoritmos criptográficos clásicos son altamente conocidos en medio de la sociedad informática lo que provoca mayor vulnerabilidad, sin contar los altos tiempos de procesamiento al momento de ser utilizados, elevando la probabilidad de ser descifrados y minimizando la disponibilidad inmediata de los recursos. Para disminuir estas probabilidades, el uso de la teoría de caos surge como una buena opción para ser aplicada en un algoritmo que tome partida del comportamiento caótico de los sistemas dinámicos, y aproveche las propiedades de los mapas logísticos para elevar el nivel de robustez en el cifrado. Es por eso que este trabajo propone la creación de un sistema criptográfico basado sobre una arquitectura dividida en dos etapas de confusión y difusión. Cada una de ellas utiliza una ecuación logística para generar números pseudoaleatorios que permitan desordenar la posición del píxel y cambiar su intensidad en la escala de grises. Este proceso iterativo es determinado por la cantidad total de píxeles de una imagen. Finalmente, toda la lógica de cifrado es ejecutada sobre la tecnología CUDA que permite el procesamiento en paralelo. Como aporte sustancial, se propone una nueva técnica de encriptación vanguardista de alta sensibilidad ante ruidos externos manteniendo no solo la confidencialidad de la imagen, sino también la disponibilidad y la eficiencia en los tiempos de proceso.---ABSTRACT---New trends to share multimedia files over open networks, demand the best use of encryption techniques to ensure the integrity, availability and confidentiality, keeping and/or improving the efficiency of the encryption process on these files. Today it is common to transfer pictures through technological networks, thus, it is necessary to update existing techniques encryption, and even better, the searching of new alternatives. Nowadays, classic cryptographic algorithms are highly known in the midst of the information society which not only causes greater vulnerability, but high processing times when this algorithms are used. It raise the probability of being deciphered and minimizes the immediate availability of resources. To reduce these odds, the use of chaos theory emerged as a good option to be applied on an algorithm that takes advantage of chaotic behavior of dynamic systems, and take logistic maps’ properties to raise the level of robustness in the encryption. That is why this paper proposes the creation of a cryptographic system based on an architecture divided into two stages: confusion and diffusion. Each stage uses a logistic equation to generate pseudorandom numbers that allow mess pixel position and change their intensity in grayscale. This iterative process is determined by the total number of pixels of an image. Finally, the entire encryption logic is executed on the CUDA technology that enables parallel processing. As a substantial contribution, it propose a new encryption technique with high sensitivity on external noise not only keeping the confidentiality of the image, but also the availability and efficiency in processing times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este Trabajo de Fin de Grado consiste en el análisis, evaluación y mejora de un sistema de segmentación temporal dedeo, embebido dentro de un programa de caracterización estética dedeos que detecta cambios de plano a través de cortes, fundidos y encadenados. En primer lugar se realiza un análisis del programa original empleando métricas que permitan cuantificar el rendimiento y detectar los principales problemas y su contexto, buscando patrones comunes que permitan enfocar las mejoras necesarias para solventar dichos problemas. A continuación, se proponen mejoras tanto funcionales como no funcionales, que son acometidas en la fase de diseño e implementación. Para las mejoras relacionadas con la segmentación temporal, se aplican técnicas existentes en el estado del arte y se adaptan a las necesidades del programa. Finalmente, se evalúa el programa comprobando que las métricas que habían cuantificado los problemas han mejorado y detallando el posible trabajo futuro a realizar sobre el programa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este Trabajo de Fin de Grado se diseña, implementa y evalúa un sistema se digitalización de muestras de esputo basado en telefonía móvil e integrable con TuberSpot. Además, se proponen técnicas de procesamiento de imagen para el control de calidad del análisis y se implementa un mecanismo para evaluar la eficiencia de la inteligencia colectiva y la gamificación en este contexto. El sistema de adquisición propuesto utiliza smartphones, adaptadores móvil-microscopio y una aplicación Android. El protocolo de adquisición se ha diseñado conforme a un estudio realizado con personal médico cualificado. El control de calidad se basa en la inserción de bacilos simulados en las imágenes. Para la evaluación de eficiencia de TuberSpot se crea, en colaboración con médicos especialistas, un repositorio de imágenes en las que posición y número de bacilos quedan registrados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prefacio: Imágenes de la perspectiva

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente documento se presenta una nueva metodología para la caracterización de formaciones de vegetación de ribera y su morfología fluvial asociada. La metodología está basada en la utilización de sensores aerotransportados LiDAR y Cámara Digital multiespectral de gran formato junto a perfiles batimétricos tomados en campo. Este trabajo pone de manifiesto la utilidad de los datos captados por sensores LiDAR y cámaras digitales aerotransportadas en aplicaciones medioambientales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.