811 resultados para Sediment generation
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.
Resumo:
Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.
Resumo:
Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.
Resumo:
Electricity consumption in Ghana is estimated to be increasing by 10% per annum due to the demand from the growing population. However, current sources of production (hydro and thermal facilities) generate only 66% of the current demand. Considering current trends, it is difficult to substantiate these basic facts, because of the lack of information. As a result, research into the existing sources of generating electricity, electricity consumption and prospective projects has been performed. This was achieved using three key techniques; review of literature, empirical studies and modelling. The results presented suggest that, current annual installed capacity of energy generation (i.e. 1960 MW) must be increased to 9,405.59 MW, assuming 85% plant availability. This is then capable to coop with the growing demand and it would give access to the entire population as well as support commercial and industrial activities for the growth of the economy. The prospect of performing this research is with the expectation to present an academic research agenda for further exploration into the subject area, without which the growth of the country would be stagnant.
Resumo:
PV only generates electricity during daylight hours and primarily generates over summer. In the UK, the carbon intensity of grid electricity is higher during the daytime and over winter. This work investigates whether the grid electricity displaced by PV is high or low carbon compared to the annual mean carbon intensity using carbon factors at higher temporal resolutions (half-hourly and daily). UK policy for carbon reporting requires savings to be calculated using the annual mean carbon intensity of grid electricity. This work offers an insight into whether this technique is appropriate. Using half hourly data on the generating plant supplying the grid from November 2008 to May 2010, carbon factors for grid electricity at half-hourly and daily resolution have been derived using technology specific generation emission factors. Applying these factors to generation data from PV systems installed on schools, it is possible to assess the variation in the carbon savings from displacing grid electricity with PV generation using carbon factors with different time resolutions. The data has been analyzed for a period of 363 to 370 days and so cannot account for inter-year variations in the relationship between PV generation and carbon intensity of the electricity grid. This analysis suggests that PV displaces more carbon intensive electricity using half-hourly carbon factors than using daily factors but less compared with annual ones. A similar methodology could provide useful insights on other variable renewable and demand-side technologies and in other countries where PV performance and grid behavior are different.
Resumo:
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Experiences from the Mitigation Options for Phosphorus and Sediment (MOPS) projects, which aim to determine the effectiveness of measures to reduce pollutant loading from agricultural land to surface waters, have been used to contribute to the findings of a recent paper (Kay et al., 2009, Agricultural Systems, 99, 67–75), which reviewed the efficacy of contemporary agricultural stewardship measures for ameliorating the water pollution problems of key concern to the UK water industry. MOPS1 is a recently completed 3-year research project on three different soil types in the UK, which focused on mitigation options for winter cereals. MOPS1 demonstrated that tramlines can be the major pathway for sediment and nutrient transfer from arable hillslopes, and that although minimum tillage, crop residue incorporation, contour cultivation, and beetle banks also have potential to be cost-effective mitigation options, tramline management is the one of the most promising treatments for mitigating diffuse pollution losses, as it was able to reduce sediment and nutrient losses by 72–99% in four out of five site years trialled. Using information from the MOPS projects, this paper builds on the findings of Kay et al. to provide an updated picture of the evidence available and the immediate needs for research in this area.
Resumo:
A new mild method has been devised for generating o-(naphtho)quinone methides via fluoride-induced desilylation of silyl derivatives of o-hydroxybenzyl(or 1-naphthylmethyl) nitrate. The reactive o-(naphtho)quinone methide intermediates were trapped by C, O, N and S nucleophiles and underwent “inverse electron-demand” hetero Diels- Alder reaction with dienophiles to give stable adducts. The method has useful potential application in natural product synthesis and drug research