995 resultados para Sean Ociepka
Resumo:
The aim of this paper is to show that only in a society where human rights are honored and democracy is vigorous, the process of subjectivation be possible. It is a critical sociology research. The article is presented in two parts, the first, subject and subjectivity in contemporary times, analyze the obstacles that individuals have for subjective process, and the second, subject and human rights and subject and democracy we argue about the need for human rights and democracy for the process of subjectivation.
Resumo:
We often wonder what is the role or the role that intellectuals, academics and artists can play in countries and conflict environments, for this specific case, countries and environments that do not have real protection both its integrity and satisfaction their basic and special needs. Beyond establishing what mode as artists, intellectuals and academics can contribute to meeting these requirements, this article is intended to establish a position on the importance acquired symbolic forms and reflected in the writers regardless whether philosophers or writers, let put the rawness of what happens and there comes the lonely spirits whose loneliness imposed and caused never chosen, appears to them as a lifestyle. For Philippe Claudel and the case of Paul Ricoeur, they are thus chosen for this article as incessant dialogues of the ways in which the rootlessness provides food for thought especially for those we see as different titles you are assigned to experiences of violence.
Resumo:
Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.
Resumo:
A methodology for the synthesis of novel polymerisable spiropyrans with photomechanical properties suitable for subsequent copolymerisation with either vinyl or acrylate-based biomaterials is described. UV-vis spectroscopic characterisation of photoisomerism shows that photochromic behaviour with respect to related non-polymerisable compounds is retained and is solvent dependent. In acetone, conventional spiropyran-merocyanine photochromism is observed for nitro-spiropyran derivatives, whereas in dichloromethane both nitro-spiropyrans and spiropyrans isomerise to merocyanines which rapidly form H-aggregates. The monomers were designed such that an alkyl spacer of variable length, both electronically and sterically, separates the polymerisable moiety from the photochromic core and allows steric aspects of the resulting photomechanical behaviour to be explored. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.
Resumo:
Novel surface-modified hydrogel materials have been prepared by binding charged porphyrins TMPyP (tetrakis-(4-N-methylpyridyl)porphyrin) and TPPS (tetrakis(4-sulfonatophenyl)porphyrin) to copolymers of HEMA (2-hydroxyethyl methacrylate) with either MAA (methacrylic acid) or DEAEMA (2-(diethylamino)ethylmethacrylate). The charged hydrogels display strong electrostatic interactions with the appropriate cationic or anionic porphyrins to give materials which are intended to be used to generate cytotoxic singlet oxygen (1O2) on photoexcitation and can therefore be used to reduce postoperative infection of the intraocular hydrogel-based replacement lenses that are used in cataract surgery. The UV/vis spectra of TMPyP in MAA:HEMA copolymers showed a small shift in the Soret band and a change from single exponential (161 Ã?�Ã?Âs) triplet decay lifetime in solution to a decay that could be fitted to a biexponential fit with two approximately equal components with Ã?�Ã?´ ) 350 and 1300 Ã?�Ã?Âs. O2 bubbling reduced the decay to a dominant (90%) component with a much reduced lifetime of 3 Ã?�Ã?Âs and a minor, longer lived (20 Ã?�Ã?Âs) component. With D2O solvent the 1O2 lifetime was measured by 1270 nm fluorescence as 35 Ã?�Ã?Âs in MAA:HEMA, compared to 67 Ã?�Ã?Âs in solution, although absorbance-matched samples showed similar yield of 1O2 in the polymers and in aqueous solution. In contrast to the minor perturbation in photophysical properties caused by binding TMPyP to MAA:HEMA, TPPS binding to DEAEMA:HEMA copolymers profoundly changed the 1O2 generating ability of the TPPS. In N2-bubbled samples, the polymer-bound TPPS behaved in a similar manner to TMPyP in its copolymer host; however, O2 bubbling had only a very small effect on the triplet lifetime and no 1O2 generation could be detected. The difference in behavior may be linked to differences in binding in the two systems. With TMPyP in MAA:HEMA, confocal fluorescence microscopy showed significant penetration of the porphyrin into the core of the polymer film samples (>150 Ã?�Ã?Âm). However, for TPPS in DEAEMA:HEMA copolymers, although the porphyrin bound much more readily to the polymer, it remained localized in the first 20 Ã?�Ã?Âm, even in heavily loaded samples. It is possible that the resulting high concentration of TPPS may have cross-linked the hydrogels to such an extent that it significantly reduced the solubility and/or diffusion rate of oxygen into the doped polymers. This effect is significant since it demonstrates that even simple electrostatic binding of charged porphyrins to hydrogels can have an unexpectedly large effect on the properties of the system as a whole. In this case it makes the apparently promising TPPS/DEAEMA:HEMA system a poor candidate for clinical application as a postoperative antibacterial treatment for intraocular lenses while the apparently equivalent cationic system TMPyP/MAA:HEMA displays all the required properties.
Resumo:
The book has been described by various Irish historians as "the definitive treatment of that most peculiar institution--the Ulster Custom--and its tangled relationship with irish land and politics" (Liam Kennedy), "a brilliantly reconceptualised sketch of the Irish land question" (David Miller). "All previous discussion," according to another reviewer, "must take second place to Dowling's exhaustive survey, which draws on the whole range of surviving estate records to examine the theory and practice of tenant right across three centuries" (Sean Connolly).
Resumo:
Indwelling urinary catheters are utilized in the management of a wide range of conditions both in an acute and a chronic setting. However, utilization of this type of device is associated with a number of issues, including an increased propensity to develop bacteriuria, symptomatic infection and also encrusted deposits on the device. The development of novel biomaterials, incorporation of therapeutic agents and other strategies to minimize the issues associated with these devices are discussed in this review.
Resumo:
In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (