995 resultados para Schembechler, Bo
Resumo:
In 2003, the Green Building Council of Australia (GBCA) launched their Green Star rating tools for various types of buildings in order to promote green building practice in Australia. Of these, the Green Star-Office Interior rating tool is designed for building owners, tenants and interior designers to assess the environmental impact of an interior fitout. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use and Ecology, Emissions, and Innovation. This paper reviews the usage of the Green Star system in Australian office tenancy fitouts and the potential challenges associated with Green Star-Office Interior implementation. This involves the analysis of score sheets of 66 office interior projects across Australia that achieved Green Star certification. The percentage of green star points obtained within each category and sub-categories (credits) for each project are investigated to illustrate the achievement of credits. The results show that Emission-related credits and Innovation related credits are the easiest and most difficult respectively to obtain. It is also found that 6 Green Star office interior projects perform especially better in the categories of Energy and Ecology than 4 and 5 Star projects. The investigation of point frequency in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
The green building trend has increased rapidly worldwide in recent decades as a means of addressing growing concerns over climate change and global warming and to reduce the impact of the building industry on the environment. A significant contribution in Australia is the use of a series of rating tools by the Green Building Council Australia (GBCA) for the certification of various types of buildings. This paper reviews the use of the Green Star system in Australian building construction, and investigates the potential challenges involved in acquiring the certification of Australian buildings by critically analysing a database of most recently certified GBCA projects. The results show that management-related credits and innovation-related credits are the easiest and most difficult respectively to obtain. Additionally, 6-Star green buildings achieve significantly higher points than other certified buildings in the Energy category. In contrast, 4 Star green buildings achieve more points in the Material category than 5 and 6 Star buildings. The study offers a useful reference for both property developers and project teams to obtain a better understanding of the rating scheme and consequently the effective preparation of certification documentation.
Resumo:
Participant performance is critical to the success of projects. At the same time, enhancing the satisfaction of participants not only helps in problem solving but also improves their motivation and cooperation. However, previous research related to participant satisfaction is primarily concerned with clients and customers and relatively little attention has been paid to contractors. This paper investigates how the performance of project participants affects contractor project satisfaction in terms of the client's clarity of objectives (OC) and promptness of payments (PP), designer carefulness (DC), construction risk management (RM), the effectiveness their contribution (EW) and mutual respect and trust (RT). With 125 valid responses from contractors in Malaysia, a contractor satisfaction model is developed based on structural equation modelling. The results demonstrate the necessity for dividing abstract satisfaction into two dimensions, comprising economic-related satisfaction (ES) and production-related satisfaction (PS), with DC, OC, PP and RM having significant effects on ES, while DC, OC, EW and RM influence PS. In addition, the model tests the indirect effects of these performance variables on ES and PS. In particular, OC indirectly affects ES and PS through mediation of RM and DC respectively. The results also provide opportunities for improving contractor satisfaction and supplementing the contractor selection criteria for clients.
Resumo:
In the construction industry, contractors have to improve the efficiency of markup decision-making to survive from fierce business competition. The effect of client type on markup decision has been aware in previous studies and contractors are advocated to take account of decision factors properly when they are confronted with different types of projects. Nevertheless, the rationales behind the inclusion of different factors in markup decision-making for different projects sustain unknown. In this study, fifty-three factors were identified after extensive literature review and interviews with professionals. The identified factors were afterwards grouped under the headings of nine attributes and compiled in a questionnaire for survey in China. Using the Hotelling’s T-square test, it is found that three attributes (i.e., project characteristic, client characteristic, and macro condition) can explain the effect of client type on contractors’ markup decision. The research findings provide useful insights into the cognition of bid pricing as well as the improvement of bidding efficiency. While the research works were situated in China, contractors in other countries could benefit from the research findings in a similar vein.
Resumo:
The design-build (DB) delivery system is an effective means of delivering a green construction project and selecting an appropriate contractor is critical to project success. Moreover, the delivery of green buildings requires specific design, construction and operation and maintenance considerations not generally encountered in the procurement of conventional buildings. Specifying clear sustainability requirements to potential contractors is particularly important in achieving sustainable project goals. However, many client/owners either do not explicitly specify sustainability requirements or do so in a prescriptive manner during the project procurement process. This paper investigates the current state-of-the-art procurement process used in specifying the sustainability requirements of the public sector in the USA construction market by means of a robust content analysis of 40 design-build requests for proposals (RFPs). The results of the content analysis indicate that the sustainability requirement is one of the most important dimensions in the best-value evaluation of DB contractors. Client/owners predominantly specify the LEED certification levels (e.g. LEED Certified, Silver, Gold, and Platinum) for a particular facility, and include the sustainability requirements as selection criteria (with specific importance weightings) for contractor evolution. Additionally, larger size projects tend to allocate higher importance weightings to sustainability requirements.This study provides public DB client/owners with a number of practical implications for selecting appropriate design-builders for sustainable DB projects.
Resumo:
Construction activities have significant impacts on the environment, economy and society. As a result, sustainability has become an agenda in construction related business. This is evidenced by an increasingly number of construction related companies adopting sustainability reporting practice. Construction contractors are no exception. This study aims to investigate the sustainability reporting practices adopted by top Chinese contractors active in the international arena. The focus is placed on those Chinese contractors ranked top 50 by the Engineering News Record (ENR) top 225 international contractors. The results showed that the sustainability reporting practices of these top Chinese contractors, in terms of both approaches and the depth, varied significantly however there is a clear trend of growing level of disclosure of sustainability related information. Similarly, environmental sustainability seems the predominate focus of sustainability reporting exercises of top international contractors from China. These findings help to assist senior management of construction contractors to form business strategies to facilitate disclosure and other sustainability related practices.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.
Resumo:
Graphene-polymer nanocomposites have attracted considerable attention due to their unique properties, such as high thermal conductivity (~3000 W mK-1), mechanical stiffness (~ 1 TPa) and electronic transport properties. Relatively, the thermal performance of graphene-polymer composites has not been well investigated. The major technical challenge is to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, we conducted molecular dynamics simulations to investigate the thermal transport in graphene-polyethylene nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductivity was studied, taking into account of the effects of model size and thermal conductivity of graphene. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.
Resumo:
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
As a renewable energy source, wind power is playing an increasingly important role in China’s electricity supply. Meanwhile, China is also the world’s largest market for Clean Development Mechanism (CDM) wind power projects. Based on the data of 27 wind power projects of Inner Mongolia registered with the Executive Board of the United Nations (EB) in 2010, this paper constructs a financial model of Net Present Value (NPV) to analyze the cost of wind power electricity. A sensitivity analysis is then conducted to examine the impact of different variables with and without Certified Emission Reduction (CER) income brought about by the CDM. It is concluded that the CDM, along with static investment and annual wind electricity production, is one of the most significant factors in promoting the development of wind power in China. Additionally, wind power is envisaged as a practical proposition for competing with thermal power if the appropriate actions identified in the paper are made.