707 resultados para SUBTELOMERIC REARRANGEMENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified. We have used Cre-mediated recombination of LoxP sites in embryonic stem cells and mice to generate a 550-kb deletion encompassing 16 of these genes in the corresponding region on mouse chromosome 16. Mice heterozygous for this deletion are normal and do not exhibit cardiovascular abnormalities. Because mice with a larger deletion on mouse chromosome 16 do have heart defects, the results allow us to exclude these 16 genes as being solely, or in combination among themselves, responsible for the cardiovascular abnormalities in velocardiofacial/DiGeorge syndrome. We also generated mice with a duplication of the 16 genes that may help dissect the genetic basis of “cat eye” and derivative 22 syndromes that are characterized by extra copies of portions of 22q11, including these 16 genes. We also describe a strategy for selecting cell lines with defined chromosomal rearrangements. The method is based on reconstitution of a dominant selection marker after Cre-mediated recombination of LoxP sites. Therefore it should be widely applicable to many cell lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav−/− mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav+/− mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav−/− mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campomelic dysplasia (CD) is a rare, neonatal human chondrodysplasia characterized by bowing of the long bones and often associated with male-to-female sex-reversal. Patients present with either heterozygous mutations in the SOX9 gene or chromosome rearrangements mapping at least 50 kb upstream of SOX9. Whereas mutations in SOX9 ORF cause haploinsufficiency, the effects of translocations 5′ to SOX9 are unclear. To test whether these rearrangements also cause haploinsufficiency by altering spatial and temporal expression of SOX9, we generated mice transgenic for human SOX9-lacZ yeast artificial chromosomes containing variable amounts of DNA sequences upstream of SOX9. We show that elements necessary for SOX9 expression during skeletal development are highly conserved between mouse and human and reveal that a rearrangement upstream of SOX9, similar to those observed in CD patients, leads to a substantial reduction of SOX9 expression, particularly in chondrogenic tissues. These data demonstrate that important regulatory elements are scattered over a large region upstream of SOX9 and explain how particular aspects of the CD phenotype are caused by chromosomal rearrangements 5′ to SOX9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial structural rearrangements of chromosomes represent a factor of malformation risk that could vary over a large range, making genetic counseling difficult. However, they also represent a powerful tool for increasing knowledge of the genome, particularly by studying breakpoints and viable imbalances of the genome. We have developed a collaborative database that now includes data on more than 4100 families, from which we have developed a web site called HC Forum® (http://HCForum.imag.fr). It offers geneticists assistance in diagnosis and in genetic counseling by assessing the malformation risk with statistical models. For researchers, interactive interfaces exhibit the distribution of chromosomal breakpoints and of the genome regions observed at birth in trisomy or in monosomy. Dedicated tools including an interactive pedigree allow electronic submission of data, which will be anonymously shown in a forum for discussions. After validation, data are definitively registered in the database with the email of the sender, allowing direct location of biological material. Thus HC Forum® constitutes a link between diagnosis laboratories and genome research centers, and after 1 year, more than 700 users from about 40 different countries already exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of a transcriptionally competent open complex is a highly regulated multistep process involving at least two intermediates. The rate of formation and stability of the intermediate complexes often determine promoter strength. However, the detailed mechanism of formation of the open complex and the high resolution structures of these intermediates are not known. In this study the structures of the open and intermediate complexes formed on the lacUV5 promoter by Escherichia coli RNA polymerase were analyzed using ‘zero length’ DNA–protein cross-linking. In both the open and the intermediate complexes the core subunits (β′ and β) interact with lacUV5 DNA in a similar way, forming DNA–protein contacts flanking the initiation site. At the same time, the recognition (σ70) subunit closely interacts with the promoter only in the open complex. In combination with our previous results, the data suggest that during promoter recognition contacts of the σ subunit with core RNA polymerase and promoter DNA are rearranged in concert. These rearrangements constitute a landmark of transition from the intermediate to the open complex, identifying the σ subunit as a key player directing formation of the open complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), which contain large fragments of genomic DNA, have been successfully used as transgenes to create mouse models of dose-dependent diseases. They are also potentially valuable as transgenes for dominant diseases given that point mutations and/or small rearrangements can be accurately introduced. Here, we describe a new method to introduce small alterations in BACs, which results in the generation of point mutations with high frequency. The method involves homologous recombination between the original BAC and a shuttle vector providing the mutation. Each recombination step is monitored using positive and negative selection markers, which are the Kanamycin-resistance gene, the sacB gene and temperature-sensitive replication, all conferred by the shuttle plasmid. We have used this method to introduce four different point mutations and the insertion of the β-galactosidase gene in a BAC, which has subsequently been used for transgenic animal production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The “type I” pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The “type II” pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G2/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G2/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by ≈300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low folate intake as well as alterations in folate metabolism as a result of polymorphisms in the enzyme methylenetetrahydrofolate reductase (MTHFR) have been associated with an increased incidence of neural tube defects, vascular disease, and some cancers. Polymorphic variants of MTHFR lead to enhanced thymidine pools and better quality DNA synthesis that could afford some protection from the development of leukemias, particularly those with translocations. We now report associations of MTHFR polymorphisms in three subgroups of pediatric leukemias: infant lymphoblastic or myeloblastic leukemias with MLL rearrangements and childhood lymphoblastic leukemias with either TEL-AML1 fusions or hyperdiploid karyotypes. Pediatric leukemia patients (n = 253 total) and healthy newborn controls (n = 200) were genotyped for MTHFR polymorphisms at nucleotides 677 (C→T) and 1,298 (A→C). A significant association for carriers of C677T was demonstrated for leukemias with MLL translocations (MLL+, n = 37) when compared with controls [adjusted odd ratios (OR) = 0.36 with a 95% confidence interval (CI) of 0.15–0.85; P = 0.017]. This protective effect was not evident for A1298C alleles (OR = 1.14). In contrast, associations for A1298C homozygotes (CC; OR = 0.26 with a 95% CI of 0.07–0.81) and C677T homozygotes (TT; OR = 0.49 with a 95% CI of 0.20–1.17) were observed for hyperdiploid leukemias (n = 138). No significant associations were evident for either polymorphism with TEL-AML1+ leukemias (n = 78). These differences in allelic associations may point to discrete attributes of the two alleles in their ability to alter folate and one-carbon metabolite pools and impact after DNA synthesis and methylation pathways, but should be viewed cautiously pending larger follow-up studies. The data provide evidence that molecularly defined subgroups of pediatric leukemias have different etiologies and also suggest a role of folate in the development of childhood leukemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the Age of Exploration began, there has been a drastic breaching of biogeographic barriers that previously had isolated the continental biotas for millions of years. We explore the nature of these recent biotic exchanges and their consequences on evolutionary processes. The direct evidence of evolutionary consequences of the biotic rearrangements is of variable quality, but the results of trajectories are becoming clear as the number of studies increases. There are examples of invasive species altering the evolutionary pathway of native species by competitive exclusion, niche displacement, hybridization, introgression, predation, and ultimately extinction. Invaders themselves evolve in response to their interactions with natives, as well as in response to the new abiotic environment. Flexibility in behavior, and mutualistic interactions, can aid in the success of invaders in their new environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many species, the Y (or W) chromosome carries relatively few functional genes. This observation motivates the null hypothesis that the Y will be a minor contributor to genetic variation for fitness. Previous data and theory supported the null hypothesis, but evidence presented here shows that the Y of Drosophila melanogaster is a major determinant of a male's total fitness, with standing genetic variation estimated to be 68% of that of an entire X/autosome genomic haplotype. Most Y-linked genes are expressed during spermatogenesis, and correspondingly, we found that the Y influences fitness primarily through its effect on a male's reproductive success (sperm competition and/or mating success) rather than his egg-to-adult viability. But the fitness of a Y highly depended on the genetic makeup of its bearer, reverting from high to low in different genetic backgrounds. This pattern leads to large epistatic (inconsistent among backgrounds) but no additive (consistent among backgrounds) Y-linked genetic variance for fitness. On a microevolutionary scale, the observed large epistatic variation on the Y substantially reduces heritable variation for fitness among males, and on a macroevolutionary scale, the Y produces strong selection for genomic rearrangements that move interacting genes onto the nonrecombining region of the Y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human mutation rate for base substitutions is much higher in males than in females and increases with paternal age. This effect is mainly, if not entirely, due to the large number of cell divisions in the male germ line. The mutation-rate increase is considerably greater than expected if the mutation rate were simply proportional to the number of cell divisions. In contrast, those mutations that are small deletions or rearrangements do not show the paternal age effect. The observed increase with the age of the father in the incidence of children with different dominant mutations is variable, presumably the result of different mixtures of base substitutions and deletions. In Drosophila, the rate of mutations causing minor deleterious effects is estimated to be about one new mutation per zygote. Because of a larger number of genes and a much larger amount of DNA, the human rate is presumably higher. Recently, the Drosophila data have been reanalyzed and the mutation-rate estimate questioned, but I believe that the totality of evidence supports the original conclusion. The most reasonable way in which a species can cope with a high mutation rate is by quasi-truncation selection, whereby a number of mutant genes are eliminated by one “genetic death.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic mapping of wheat, maize, and rice and other grass species with common DNA probes has revealed remarkable conservation of gene content and gene order over the 60 million years of radiation of Poaceae. The linear organization of genes in some nine different genomes differing in basic chromosome number from 5 to 12 and nuclear DNA amount from 400 to 6,000 Mb, can be described in terms of only 25 “rice linkage blocks.” The extent to which this intergenomic colinearity is confounded at the micro level by gene duplication and micro-rearrangements is still an open question. Nevertheless, it is clear that the elucidation of the organization of the economically important grasses with larger genomes, such as maize (2n = 10, 4,500 Mb DNA), will, to a greater or lesser extent, be predicted from sequence analysis of smaller genomes such as rice, with only 400 Mb, which in turn may be greatly aided by knowledge of the entire sequence of Arabidopsis, which may be available as soon as the turn of the century. Comparative genetics will provide the key to unlock the genomic secrets of crop plants with bigger genomes than Homo sapiens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that insert between genes. These retroelements are less abundant in smaller genome plants, including rice and sorghum. Although 5- to 200-kb blocks of methylated, presumably heterochromatic, retrotransposons flank most maize genes, rice and sorghum genes are often adjacent. Similar genes are commonly found in the same relative chromosomal locations and orientations in each of these three species, although there are numerous exceptions to this collinearity (i.e., rearrangements) that can be detected at the levels of both the recombinational map and cloned DNA. Evolutionarily conserved sequences are largely confined to genes and their regulatory elements. Our results indicate that a knowledge of grass genome structure will be a useful tool for gene discovery and isolation, but the general rules and biological significance of grass genome organization remain to be determined. Moreover, the nature and frequency of exceptions to the general patterns of grass genome structure and collinearity are still largely unknown and will require extensive further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella spp. have evolved the ability to enter into cells that are normally nonphagocytic. The internalization process is the result of a remarkable interaction between the bacteria and the host cells. Immediately on contact, Salmonella delivers a number of bacterial effector proteins into the host cell cytosol through the function of a specialized organelle termed the type III secretion system. Initially, two of the delivered proteins, SopE and SopB, stimulate the small GTP-binding proteins Cdc42 and Rac. SopE is an exchange factor for these GTPases, and SopB is an inositol polyphosphate phosphatase. Stimulation of Cdc42 and Rac leads to marked actin cytoskeleton rearrangements, which are further enhanced by SipA, a Salmonella protein also delivered into the host cell by the type III secretion system. SipA lowers the critical concentration of G-actin, stabilizes F-actin at the site of bacterial entry, and increases the bundling activity of the host-cell protein T-plastin (fimbrin). The cellular responses stimulated by Salmonella are short-lived; therefore, immediately after bacterial entry, the cell regains its normal architecture. Remarkably, this process is mediated by SptP, another target of the type III secretion system. SptP exert its function by serving as a GTPase-activating protein for Cdc42 and Rac, turning these G proteins off after their stimulation by the bacterial effectors SopE and SopB. The balanced interaction of Salmonella with host cells constitutes a remarkable example of the sophisticated nature of a pathogen/host relationship shaped by evolution through a longstanding coexistence.