919 resultados para SPRAY COATING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study developed in order to know the carpet influence when used in the floor of a hotel room. Twelve air samples of 250L (six in a room with carpet and six more in a room with wood floor) were collected through an impaction method with a flow rate of 140 L/min onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%), using the Millipore air Tester (Millipore), during cleaning activities. Outdoor sample was also performed to be used as a reference. Surface samples from floor and desks, taken at the same time, were collected by the swabbing method. to 7 days. Besides fungal contamination, we also assessed particulate matter contamination in both rooms during the same cleaning tasks. In the analyzed sur- faces, isolates belonging to Aspergillus fumigatus complex were the only fungi found in the carpeted room, whereas in the other room we found Penicllium sp. (63.6%) and Aspergillus sp. (13.6%) as the most frequent genera. In the case of particles the room with carpet obtained significant higher values for both metrics (PMC and PNC), showing that carpet may has influence on particles’ contamination of the room.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The publisher regrets to inform the readers that the image that is appearing for Fig. 8 is incorrect and that the Supplementary material is missing on the published paper. The correct image for Fig. 8 and the Supplementary files are provided below: Fig. 8. (a) Timber blocks covered by invented plastic container bottom open, (b) timber blocks in the field after trial, (c) and (d) comparison between resin-coated blocks without termite damage and control blocks which were severely damaged by termites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of anti-corrosion inhibitor addition to epoxy coating, on the disbanding rate was evaluated. First to determination of mechanism, the bare steel substrates were immersed in the 3.5% NaCl solution and the solution containing 1 mM anti corrosion. The Electrochemical Impedance Spectroscopy was performed after 5 and 24 hour. The results indicated a lower corrosion rate in the presence of inhibitor. During the time, charge transfer resistance, was decreased for the substrates immersed in NaCl solution, and increased for the substrates immersed in NaCl solution containing 1 mM anti corrosion. This result can be related to more stability of corrosion products in presence of anti-corrosion and film formation. The coated substrates, with four different concentration of anticorrosion in coating, were protected under -1.2 voltage in the 3.5% NaCl solution. After 12 and 24 hour, the EIS test and disbanding area measurement, were evaluate. The lower disbanding rate, more charge transfer resistance and less double layer capacitance for the coating containing 0.75w% inhibitor, were observed. The result of Pull-off test after 1 day immersion in 3.5% NaCl solution, showed more wet adhesion for the coating containing 0.75w% inhibitor. The images of FE-SEM electron microscope and surface analyses EDX on the coated substrate after disbanding and the bare substrate immersed in 3.5w% NaCl containing 1 mM inhibitor, were proved the formation of stabilized film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article addresses the problem of spray vaporization and combustion in axisymmetric opposed-jet configurations involving a stream of hot air counterflowing against a stream of nitrogen carrying a spray of fuel droplets. The Reynolds numbers of the jets are assumed to be large, so that mixing of the two streams is restricted to a thin mixing layer that separates the counterflowing streams. The evolution of the droplets in their feed stream from the injection location is seen to depend fundamentally on the value of the droplet Stokes number, St, defined as the ratio of the droplet acceleration time to the mixing layer strain time close to the stagnation point. Two different regimes of spray vaporization and combustion can be identified depending on the value of St. For values of St below a critical value, equal to 1/4 for dilute sprays with small values of the spray liquid mass loading ratio, the droplets decelerate to approach the gas stagnation plane with a vanishing axial velocity. In this case, the droplets located initially near the axis reach the mixing layer, where they can vaporize due to the heat received from the hot air, producing fuel vapor that can burn with the oxygen in a diffusion flame located on the air side of the mixing layer. The character of the spray combustion is different for values of St of order unity, because the droplets cross the stagnation plane and move into the opposing air stream, reaching distances that are much larger than the mixing layer thickness before they turn around. The vaporization of these crossing droplets, and also the combustion of the fuel vapor generated by them, occur in the hot air stream, without significant effects of molecular diffusion, generating a vaporization-assisted nonpremixed flame that stands on the air side outside the mixing layer. Separate formulations will be given below for these two regimes of combustion, with attention restricted to the near-stagnation-point region, where the solution is self-similar and all variables are only dependent on the distance to the stagnation plane. The resulting formulations display a reduced number of controlling parameters that effectively embody dependences of the structure of the spray flame on spray dilution, droplet inertia, and fuel preferential diffusion. Sample solutions are given for the limiting cases of pure vaporization and of infinitely fast chemistry, with the latter limit formulated in terms of chemistry-free coupling functions that allow for general nonunity Lewis numbers of the fuel vapor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tracheal intubation is extremely distressing, painful, and may influence heart rate and blood pressure. Sedatives, analgesics, and muscle relaxants are not commonly used for intubation in neonates. Objectives: This study aimed to evaluate the effects of lidocaine spray as a non-intravenous drug before neonatal intubation on blood pressure, heart rate, oxygen saturation and time of intubation. Patients and Methods: In a randomized, controlled study each neonate was randomly assigned to one of the two study groups by staffs who were not involved in the infant's care. The allocation concealment was kept in an opaque sealed envelope, and the investigators, the patient care team, and the assessors were blinded to the treatment allocation. The selected setting was NICU unit of a teaching hospital in Ilam city, Iran and participants were 60 neonates with indication of tracheal intubation with gestational age >30 weeks. Patients in the treatment group received lidocaine spray and the placebo group received spray of normal saline prior to intubation. Main outcome measurements were the mean rates of blood pressure, heart rate, oxygen saturation, intubation time and lidocaine side effects were measured before and after intubation. Results: Totally 60 newborns including 31 boys and 29 girls were entered into the study (drug group n = 30; placebo group n = 30). Boy/girl ratio in treatment and placebo groups were 1.3 and 0.88, respectively. Mean age ± SD of participants was 34.1 ± 24.8 hours (treatment: 35.3 ± 25.7; placebo: 32.9 ± 24.3; P < 0.0001). Mean weight ± SD of neonates was 2012.5 ± 969 g. Application of lidocaine spray caused a significant reduction of mean intubation time among treatment group compared with placebo group (treatment: 15.03 ± 2.2 seconds; placebo: 18.3 ± 2.3 seconds; P < 0.0001). Mean blood pressure, heart rate and oxygen saturation rate, among neonates in treatment group was reduced after intubation compared with their relevant figures before intubation; however, their differences were not statistically significant except for mean oxygen saturation rate that was reduced significantly in placebo group. No side effects were observed during study. Conclusions: Though the current study revealed some promising results in the application of lidocaine spray during neonatal intubation without any considerable side effects; however, the current investigation could only be considered as a pilot study for further attempts in different locations with higher sample sizes and in different situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homeowners, landowners, pesticide applicators, and farmers are concerned about pesticide drift. It may injure a homeowner’s garden or flowers or ruin a neighboring farmer’s crop. While no Maryland court has considered the issue of liability from pesticide drift, courts in other states have. These decisions provide some guidance on how a Maryland court might handle the issue. Depending on the facts of the drift case, pesticide applicators and farmers could owe damages for nuisance or trespass case, or for uses inconsistent with the pesticide label.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I materiali bioceramici, in base alla loro capacità d’interazione con l’osso e i tessuti del corpo umano, possono essere classificati in bioinerti e bioattivi. I materiali bioinerti, una volta impiantati, formano uno strato fibroso, non aderente, all’interfaccia con l’osso. Tale strato è una forma naturale di protezione che l’organismo adotta per isolare il materiale che viene, inizialmente, percepito come estraneo. Al contrario, i materiali bioattivi, una volta impiantati, mostrano una risposta biologica immediata, creando un legame attivo con l’osso e i tessuti nel quale vengono impiantati, favorendo e velocizzando la guarigione. La zirconia è un materiale ceramico altamente biocompatibile, definito come bioinerte per la sua scarsa capacità d’integrazione con l’osso ed i tessuti dell’organismo umano. Questa sua particolarità può, nel lungo termine, comprometterne la funzione fino ad arrivare, in alcuni casi, al totale malfunzionamento dell’impianto. Negli ultimi anni, diversi studi sono stati condotti con lo scopo di aumentare la capacità di biointegrazione della zirconia ed alcuni brevetti sono stati depositati. L’obiettivo del presente lavoro è quello di condurre un’analisi bibliografica ed una ricerca brevettuale sul tema dei coating bioattivi su zirconia per impianti dentali ed ortopedici. La necessità di condurre questo studio deriva dalla crescente richiesta di utilizzo della zirconia, in particolare, nel settore dentale. La zirconia rappresenta, infatti, ad oggi, il migliore candidato per la sostituzione dei metalli negli impianti dentali. Le buone proprietà meccaniche, l’eccellente biocompatibilità e l’aspetto estetico molto simile a quello dei denti naturali, rendono questo materiale particolarmente adatto a questo genere di applicazioni. La possibilità di rendere la sua superficie bioattiva rappresenta un importante miglioramento delle prestazioni in termini di biointegrazione, durabilità, sicurezza ed affidabilità.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the electric & hybrid electric vehicles and rapid developments in the electronic devices have increased the demand for high power and high energy density lithium ion batteries. Graphite (theoretical specific capacity: 372 mAh/g) used in commercial anodes cannot meet these demands. Amorphous SnO2 anodes (theoretical specific capacity: 781 mAh/g) have been proposed as alternative anode materials. But these materials have poor conductivity, undergo a large volume change during charging and discharging, large irreversible capacity loss leading to poor cycle performances. To solve the issues related to SnO2 anodes, we propose to synthesize porous SnO2 composites using electrostatic spray deposition technique. First, porous SnO2/CNT composites were fabricated and the effects of the deposition temperature (200,250, 300 oC) & CNT content (10, 20, 30, 40 wt %) on the electrochemical performance of the anodes were studied. Compared to pure SnO2 and pure CNT, the composite materials as anodes showed better discharge capacity and cyclability. 30 wt% CNT content and 250 oC deposition temperature were found to be the optimal conditions with regard to energy capacity whereas the sample with 20% CNT deposited at 250 oC exhibited good capacity retention. This can be ascribed to the porous nature of the anodes and the improvement in the conductivity by the addition of CNT. Electrochemical impedance spectroscopy studies were carried out to study in detail the change in the surface film resistance with cycling. By fitting EIS data to an equivalent circuit model, the values of the circuit components, which represent surface film resistance, were obtained. The higher the CNT content in the composite, lower the change in surface film resistance at certain voltage upon cycling. The surface resistance increased with the depth of discharge and decreased slightly at fully lithiated state. Graphene was also added to improve the performance of pure SnO2 anodes. The composites heated at 280 oC showed better energy capacity and energy density. The specific capacities of as deposited and post heat-treated samples were 534 and 737 mAh/g after 70 cycles. At the 70th cycle, the energy density of the composites at 195 °C and 280 °C were 1240 and 1760 Wh/kg, respectively, which are much higher than the commercially used graphite electrodes (37.2-74.4 Wh/kg). Both SnO2/CNTand SnO2/grapheme based composites with improved energy densities and capacities than pure SnO2 can make a significant impact on the development of new batteries for electric vehicles and portable electronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro di tesi, svolto in collaborazione con una azienda del settore automotive, tratta lo studio di impatto di sprays combustibili su pareti calde adottando un approccio numerico CFD-3D. Viene effettuata la validazione di alcuni tra i più utilizzati modelli di interazione goccia-parete implementati nel software commerciale STAR-CD. Lo scopo principale del lavoro svolto è quello di indirizzare il lettore verso una corretta implementazione della simulazione di uno spray impattante, comprendere pregi e limiti dei modelli applicati e fornire dei criteri per effettuare la scelta tra uno di essi in funzione di condizioni di interesse motoristico.