904 resultados para SPINDLE MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, it was investigated the possibility of using a geopolymeric membrane as an alternative to the expensive ceramic ones. The goal was to synthesise a low-cost membrane made entirely of geopolymer that can perform equally to commercial membranes. This study initially investigated the feasibility of preparing a microporous support suitable for microfiltration through casting and pressing techniques. Subsequently, a selective geopolymeric layer was developed and deposited on the support, with the capability to operate within the microfiltration range and to effectively separate oil from oil-water emulsions. In order to evaluate the performance, the properties of the geopolymeric supports obtained through pressing were carefully evaluated during the experimentation phase investigating the effect of varying parameters such as sodium silicate content, water content, and applied pressure. The results obtained from these evaluations showed that it is possible to produce supports with excellent porosity and highly controlled narrow pore size distributions. The most promising geopolymeric pressed support was then used for the deposition of a selective layer on its surface. Following physical characterization, it was confirmed that the resulting geopolymer membrane was suitable for use in the microfiltration range. Subsequently, the membrane was tested for its ability to separate oil from water using various emulsions prepared with different surfactants at different concentrations and pH. The results revealed that the fluxes were highly dependent on the electrostatic interaction between the membrane and the emulsion, with best results being obtained with emulsions prepared using anionic surfactants. The rejection rate of the membrane was also found to be extremely high, with values over 95%, comparable to a commercial ceramic membrane. This suggests that geopolymer membranes are suitable alternatives to ceramic membranes, offering the added benefits of lower cost and reduced environmental impact during production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first main conclusion drawn from this dissertation concerns the amount of Pt deposited on the asymmetric layer of membrane produced by tape casting porosity shaping method. Three different amounts were investigated (0.15, 1.5 and 4.5 mg cm-2 ). The most optimal performance, based on H2 permeation performances, was attained when 1.5 mg cm-2 of Pt was deposited on the porous layer, resulting in a 0.642 mL min-1 cm-2 permeated H2 when 80% H2 in He was employed as the feed. Pt deposition method is influenced by the concentration of the Pt precursor, which results in different morphology of the catalyst. The second development focused on further optimization on tape casting membranes concerning the solvent employed for the Pt catalyst deposition. The same concentration of Pt was employed, depositing 1.5 mg cm-2 on the porous side of the membrane, but a mixture of acetone and water was employed as solvent. This mixture allowed the suppression of effects leading to poorly dispersed particles. As a result, it was possible to achieve 0.74 mL min-1 cm-2 at 750°C with 50% H2 in He. Lastly, first-ever permeation performance measurements into an innovative ceramic membrane type for hydrogen separation was investigated. In-depth research was done on a group of hierarchically-structured BaCe0.65Zr0.20Y0.15O3-δ(BCZY) - Gd0.2Ce0.8O2-δ(GDC) membranes produced by freeze casting porosity shaping method. Membranes were investigated observing the effect of deposition solvent and the effect of porous layer thickness. Employing a mixture of Acetone and water resulted in better hydrogen permeation at temperatures (T > 650°C), reaching 0.26 mL min-1 cm-2 at 750°C with 50% H2 in He. The reduction of porous layer thickness led to a hydrogen flow of 0.33 mL min-1 cm-2 , at 750°C with 50% H2 in He.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constantly increasing demand of clean water has become challenging to deal with over the past years, water being an ever more precious resource. In recent times, the existing wastewater treatments had to be integrated with new steps, due to the detection of so-called organic micropollutants (OMPs). These compounds have been shown to adversely affect the environment and possibly human health, even when found in very low concentrations. In order to remove OMPs from wastewater, one possible technique is a hybrid process combining filtration and adsorption. In this work, polyethersulfone multi-channel mixed-matrix membranes with embedded powdered activated carbon (PAC) were tested to investigate the membrane’s adsorption and desorption performance. Micropollutants retention was analyzed using the pharmaceutical compounds diclofenac (DCF), paracetamol (PARA) and carbamazepine (CBZ) in filtration mode, combining the PAC adsorption process with the membrane’s ultrafiltration. Desorption performance was studied through solvent regeneration, using seven different solvents: pure water, pure ethanol, mixture of ethanol and water in different concentration, sodium hydroxide and a mixture of ethanol and sodium hydroxide. Regeneration experiments were carried out in forward-flushing. At first regeneration efficiency was investigated using a single-solute solution (diclofenac in water). The mixture Ethanol/Water (50:50) was found to be the most efficient with long-term retention of 59% after one desorption cycle. It was, therefore, later tested on a membrane previously loaded with a multi-solute solution. Three desorption cycles were performed after which, retention (after 30 min) reached values of 87% for PARA and 72% for CBZ and 55% for DCF, which indicates decent regenerability. A morphological analysis on the membranes confirmed that, in any case, the regeneration cycles did not affect either the membranes’ structure, or the content and distribution of PAC in the matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on the permebility analisys of Aquivion® 980 Perfluoro sulfonic acid (PFSA) polymer with particular reference to the influence of the equivalent weight (gram of polymer per molSO3H) on the permeation properties. Aquivion grade tested, indeed, were characterized by a lower equivalent weight ( 870 g/molSO3H against 980 of the present material) with respect to data present in the open literature. Permeability of different gases (CO2, N2, and CH4) was tested at different temperatures and different humidity, a parameter which greatly influences the gas transport in such hydrophilic material- Aquivion® swells consistently in humid conditions increasing its gas permeability of more than one order of magnitude with respect to values prevailing in dry conditions. Present data confirm such behavior being the permeability of all gases and vapors tested substantially increased in presence of water. Interestingly the increase in permeability results be similar for all the gases inspected, hence such enhanced permeation capability is not associated to a selectivity loss that happens in polymeric membranes. Although, the results, of CO2, are lower compared to those obtained with the different grades, with lower equivalent weight, of Aquivion, thus suggesting that an increase of this parameter is detrimental for both permeability and selectivity of the membranes with respect to CO2. This is likely related to the fact that a lower content of SO3H groups makes it difficult to have an interconnected water domain inside the membranes. A modeling approach was considered to describe the experimental data and to give a better insight into the observed behavior, unfortunately, it resulted not sensitive enough to catch the differences between the gas permeability in PSFAs with high and low equivalent weight. The latter were indeed usually contained within 10-20% which results to be the in the same range of model precision when used in a predictive way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a world where the problem of energy resources, pollution and all aspects related to these issues become more and more dominant, a greater commitment is needed in the search for solutions. The goal of this project is to make a contribution to the research and development of new materials to reduce the environmental impact in some fields. First of all, we tried to synthesize and prepare an isatin-based membrane which has the potential for use in separating industrial gases. Furthermore, ion exchange membranes, specifically hydroxide exchange membranes (HEMs) derived from the same product can be developed for fuel cells (HEMFC) applications. These materials are essential for energy conversion and storage. The most difficult challenge is to guarantee their thermal stability and stability in corrosive environments such as alkali without losing efficiency. In recent years the poly- hydroxyalkylation catalysed with superacids, e.g. TFSA, has become increasingly studied. This reaction is exploited for the synthesis of the compounds of this thesis. After a preliminary optimization of the reaction conditions it was concluded that due to the rigidity and excessive reactivity of the system, it was not possible to obtain the isatin-based membrane to evaluate the gas separation properties. The synthesis of precursor materials for HEMs was successful by using 1-(4-bromobutyl)indoline-2,3-dione (BID) instead of isatin. A characterization of the obtained polymers was carried out using NMR, TGA and DSC analyses, and subsequently the membranes were functionalized with different ammonium-based cations. Unfortunately, this last step was not successful due to the appearance of side reactions. Future studies on the mechanism and kinetics of the reaction solve this obstacle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pilocarpine is an alkaloid obtained from the leaves of Pilocarpus genus, with important pharmaceutical applications. Previous reports have investigated the production of pilocarpine by Pilocarpus microphyllus cell cultures and tried to establish the alkaloid biosynthetic route. However, the site of pilocarpine accumulation inside of the cell and its exchange to the medium culture is still unknown. Therefore, the aim of this study was to determine the intracellular accumulation of pilocarpine and characterise its transport across membranes in cell suspension cultures of P. microphyllus. Histochemical analysis and toxicity assays indicated that pilocarpine is most likely stored in the vacuoles probably to avoid cell toxicity. Assays with exogenous pilocarpine supplementation to the culture medium showed that the alkaloid is promptly uptaken but it is rapidly metabolised. Treatment with specific ABC protein transporter inhibitors and substances that disturb the activity of secondary active transporters suppressed pilocarpine uptake and release suggesting that both proteins may participate in the traffic of pilocarpine to inside and outside of the cells. As bafilomicin A1, a specific V-type ATPase inhibitor, had little effect and NH4Cl (induces membrane proton gradient dissipation) had moderate effect, while cyclosporin A and nifedipine (ABC proteins inhibitors) strongly inhibited the transport of pilocarpine, it is believed that ABC proteins play a major role in the alkaloid transport across membranes but it is not the exclusive one. Kinetic studies supported these results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the recent progress in the development of polymeric membranes for ion-selective electrodes. The importance of knowing the mechanism of potential development in membranes for ion-selective electrodes to reach lower detection limits and improve selectivity are discussed. Recent advances and future trends of research on ion-selective electrodes are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The inorganic chemistry of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cDNA arrays are a powerful tool for discovering gene expression patterns. Nylon arrays have the advantage that they can be re-used several times. A key issue in high throughput gene expression analysis is sensitivity. In the case of nylon arrays, signal detection can be affected by the plastic bags used to keep membranes humid. In this study, we evaluated the effect of five types of plastics on the radioactive transmittance, number of genes with a signal above the background, and data variability. A polyethylene plastic bag 69 μm thick had a strong shielding effect that blocked 68.7% of the radioactive signal. The shielding effect on transmittance decreased the number of detected genes and increased the data variability. Other plastics which were thinner gave better results. Although plastics made from polyvinylidene chloride, polyvinyl chloride (both 13 μm thick) and polyethylene (29 and 7 μm thick) showed different levels of transmittance, they all gave similarly good performances. Polyvinylidene chloride and polyethylene 29 mm thick were the plastics of choice because of their easy handling. For other types of plastics, it is advisable to run a simple check on their performance in order to obtain the maximum information from nylon cDNA arrays.