903 resultados para SODIUM OXIDES
Resumo:
Perovskite oxides LaTi1-xMgxO3 (x = 0.25, 0.5) were synthesized using high-pressure and-temperature method. LaTi0.75Mg0.25O3 is a new compound. This new synthesis route has some advantages. XRD analysis showed that the x = 0.25 sample belongs to cubic perovskite-type structure and the a = 0.5 sample belongs to orthorhombic perovskite-type structure. EPR measurement indicated that Ti ions were in mixed valence state of +3 and +4. IR measurement indicated that the vibration frequency and width of BO6 octahedron stretching vibration absorption band decreases with the increasing of x. The valence state of Ti ions can be altered by high-pressure and-temperature. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Sodium ion transfer across micro-water/1,2-dichloroethane (DCE) interface facilitated by a novel ionophore, terminal-vinyl liquid crystal crown ether (LCCE) was studied by cyclic voltammetry. LCCEs have potential applications because of their physicochemical properties and the utilization of crown ethers as selective ionophoric units in other functionalized compounds are interesting. Host-guest-type behavior for such compounds in the liquid-crystalline state is studied. The experimental results suggest that the transfer of the sodium ion facilitated by LCCE was controlled by diffusion of LCCE from bulk solution of DCE to the interface. The diffusion coefficient of LCCE in DCE was calculated to be equal to (3.62 +/- 0.20) x 10(-6) cm(2)/s. Steady-state voltammograms are due to sodium ion transfer facilitated by the formation of 1: 1 metal (M)-LCCE complex at the interface and the mechanism tends to be transfer by interfacial complexation or dissociation (TIC or TID). The stability constant of the complex formed was determined to be log beta(o) = 5.5 in DCE phase. The influence of parameters such as concentration of sodium ion and concentration of LCCE on the sodium ion transfer was investigated.
Resumo:
The sodium ion transfer across the micro-water/1,2-dichloroethane interface facilitated by a novel ionophore, liquid crystal crown ether was studied systematically. The sodium ion transfer facilitated by LCCE is controlled by diffusion studied by cyclic voltammetry. The diffusion coefficient of LCCE in 1,2-dichloroethane was calculated to be equal to (2.61 +/- 0.12) X 10(-6) cm(2)/s and the stability constant of the complex between Na+ and LCCE was determined as lg beta (o) = 5.7 in 1,2-dichloroethane.
Resumo:
Novel water insoluble sodium sulfonate-functionalized poly(ether ether ketone)s containing cyclohexylidene in the main chain with degree of sulfonation up to 2.0 were synthesized from nucleophilic polycondensation of 5, 5'-carbonylbis (2-fluorobenzenesulfonate), 4, 4'-difluorobenzophenone and 4, 4'-cyclohexylidenebisphenol. The polymers showed excellent thermal stability and good water resistance as well. The DSC diagrams and WAXD patterns indicated an amorphous morphological structure of these polymers. A comprison of some properties between these copolymers and polymers derived from bisphenol A was given.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol with degree of sulfonation up to 2.0 were synthesized by nucleophilic polycondensation of various amount of 5,5 '-carbonylbis(2-fluorobenzenesulfonate) (1) and 4,4'-difluorobenzophenone (2) with 4,4'-thiodipheno (3). Component and structure of the polymers were confirmed by TR, NMR and elemental analysis. Wide angle X-ray diffraction patterns indicated an amorphous structure of the polymers. All the polymers showed excellent thermal stability and poor solubility in water. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Various hydrotalcite based catalysts were prepared for catalytic removal of NO (NO reduction by CO). The general formula of hydrotalcite compounds (HTLc) was Co-Cu-Al-HTLc. Precalcination of these materials at 450 degrees C for NO reduction by CO, was necessary for catalytic activity. All catalysts except Co-A1 and Cu-Al have very good activity at lower temperature for NO reduction by CO. All samples were characterized by XRD and BET. The tentative reaction mechanism was also proposed.
Resumo:
Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.
Resumo:
The sodium polyaluminates were synthesized by a high temperature solid state method and the luminescence of Eu2+ in the sodium polyaluminates was studied. The results show that the structure of the system Na1+xMgxAl11-xO17 from x=0.1 to x=1.0 belongs to Na-beta-alumina and the structure of the system Na1.67-2xBaxMg0.67Al10.33O17 changes at about x equal to 0.30, when x is smaller than 0.30 the system forms the solid solution structure of Na-beta-alumina, when x is larger than 0.30 the system becomes the ordered structure of Ba-beta-alumina, correspondingly the emission peak position and the relative emission intensity of Eu2+ change with the changes of composition and structure of the system. There exist two kinds of the luminescent centers of high and low energies of Eu2+ in the matrix of Na-beta-alumina structure. New phosphor with Ba-beta-alumina structure, Na0.67Ba0.50Mg0.67Al10.33O17:Eu2+, was obtained.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
Hydrotalcite-like compounds (HTLcs) CoMAlCO3, where M stands for Cr, Mn, Ni, Cu, or Fe, were synthesized by coprecipitation. After calcination at 450 degrees C, they became mixed oxides with spinel-like structure. The mixed oxides were characterized by XRD, BET, chemical analysis and the adsorption of NO. The catalytic decomposition of NO and its reduction by CO were studied over these mixed oxides. The study showed that the catalytic activity for removal of NO, was very high. The reaction mechanism is proposed and the effects of d-electrons of the transition metals on catalytic activity are elucidated.
Resumo:
The crystal structure of K7Na3[H2W12O42]3 . 6H(2)O was determined by X-ray crystallography,and refined to R=0.0864 based on 7024 observed reflections (I>2 sigma(I)). The crystallographic parameters are a=11.755(2), b=13.0493(3), c=16.289(3) Angstrom; alpha=77.13(3)degrees, beta=82.92(3)degrees, gamma=89.65(3)degrees, triclinic, space group, P (1) over bar, V=2416.7(8) Angstrom(3), Z=2, M-r=3330.98, D-cal=4.578Mg/m(3), F(000)=2904; mu (MoK alpha)=29.170mm(-1), T=293K. Two independent polyanions are centered respectively at 1,1,1/2 and 1/2, 1/2, 0, approximately perpendicular to each other with dihedral angle between the equatorial planes of the molecules at 96 degrees. K+ and Na+ respectively occupy the clefts of the two discrete polyanions.
Resumo:
Using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The homogeneities and molecular weights of three arginine esterases from snake venom, which possessing therapeutic use in myocardial infarction, were determined and compared, MALDI-TOF-MS is possessed of high accuracy, high sensitivity and rapidity. MALDI-TOF-MS and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) can provide complementary and confirmatory results information. MALDI-TOF-MS can be directly used as an important method for the purification of snake venom complexes successfully.
Resumo:
Valence stability and change of Eu(II) in oxides have been studied by luminescence spect a. The results show that the valence stability and change of Eu(II)in oxides is closely related to the radius and electric charge of positive ions substituted by Eu(II) and crystal structure of the host such as Al2O3 which can form alpha-Al2O3 single phase and alpha-Al2O3 and gamma-Al2O3 mixed phases under different reaction temperatures. A, fairly good explanation is made by the proposed relation between energy coefficient and crystal structure for the first time to the observed experiment results. if the energy coefficients of substitution ions is more than that of Eu(II), the lattice substitution of Eu(II)for these ions is not occured generally and valence stare of Eu(II)is not stable and be easily changed into Eu(III). The lattice of gamma-Al2O3 can stablize the valence state of Eu(II)within certain coped concentration and in alpha-Al2O3 crystal lattice Eu(II)can be easily changed into Eu(III).
Resumo:
Catalysts with spinel structure derived from Hydrotalcite-like Compounds (HTLcs) containing cobalt have been investigated in NO catalytic reduction by Co. It was found that catalysts with spinel structures derived from HTLcs had obviously higher activity than that prepared from general methods. A two-step reaction was observed during the reaction curse: NO was first reduced to N2O by Co, and with the increase of temperature, the N2O was reduced to N-2. The reactivity of the catalysts studied increased with the amount of cobalt-content in the catalyst, and decreased with the calcination temperature. The crystal defect would play an important role in the reaction.