623 resultados para SLAB


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Per investigare il ruolo del contrasto di densità fra rocce crostali e mantelliche, nell’origine dell’associazione peridotiti-migmatiti-gneiss della Zona d’Ultimo (Austroalpino superiore, Italia), durante l’orogenesi Varisica, sono stati studiati tre diversi litotipi provenienti dall’area in esame. Mediante l’utilizzo del software Perple_X, sono state modellizzate le condizioni P-T di equilibrio di: un paragneiss a granato e staurolite di grado metamorfico medio, un fels a granato prodotto per fusione parziale ed estrazione del fuso dalla roccia sorgente (restite), e una peridotite ad anfibolo rappresentativa del cuneo di mantello. A partire dalle peridotiti, sono state calcolate condizioni metamorfiche di picco per la Zona d’Ultimo di 900 °C e 13 kbar, in facies granulitica, confrontabili con profondità di circa 40-50 km. In queste condizioni, le peridotiti ad anfibolo presentano una densità di 3230 kg/m3, nettamente inferiore rispetto a quanto calcolato per il campione di restite, cioè 3730 kg/m3. In particolare, è stato calcolato che è necessario estrarre dalla roccia sorgente una quantità di fuso pari al 10-12 wt.%, per generare un residuo refrattario di densità equivalente alle peridotiti idrate. La differenziazione fra neosoma e paleosoma, prodotta dalla fusione parziale, può generare quindi una situazione di instabilità fra crosta e mantello, a causa del contrasto di densità fra le rocce poste a contatto. Per effetto di questa instabilità, possono verificarsi meccanismi duttili di trasferimento di massa, con inclusione di lenti di peridotiti all’interno della crosta, all’interfaccia fra lo slab continentale in subduzione ed il cuneo di mantello, ma anche, in caso di crosta inspessita, in corrispondenza della transizione crosta profonda-mantello litosferico (Moho) nella upper plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

d37Cl values were determined for Izu Bonin arc magmas erupted 0-44 Ma in order to better understand the time-dependent processing of volatiles in subduction zones. Pristine ash-sized particles (glass, pumice, scoria, and rock fragments) were handpicked from tephra drilled at ODP Site 782. d37Cl values for these particles span a large range from -2.1 to +1.7 per mil (error = ± 0.3 per mil) vs. SMOC (Standard Mean Ocean Chloride, defined as 0 per mil). The temporal data extend the previously reported range of d37Cl values of -2.6 to 0.4 per mil (bulk ash) and -5.4 to -0.1 per mil (volcanic gases) from the Quaternary Izu Bonin-Mariana volcanic front to more positive values. Overall, the temporal data indicate a time-progressive evolution, from isotopically negative Eocene and Oligocene magmas (-0.7 ± 1.1 per mil, n = 10) to Neogene magmas that have higher ?37Cl values on average (+0.3 ± 1.1 per mil; n = 13). The increase is due to the emergence of positive d37Cl values in the Neogene, while minimum d37Cl values are similar through time. The range in d37Cl values cannot be attributed to fractionation during melt formation and differentiation, and must reflect the diversity of Cl present in the arc magma sources. Cl clearly derives from the slab (> 96% Cl in arc magmas), but d37Cl values do not correlate with isotope tracers (e.g. 207Pb/204Pb and 87Sr/86Sr) that are indicative of the flux from subducting sedimentary and igneous crust. Given the steady, high Cl flux since at least 42 Ma, the temporal variability of d37Cl values is best explained by a flux from subducting isotopically positive and negative serpentinite formed in the ocean basins that mingles with and possibly overprints the isotopically negative flux from sediment and igneous crust at arc front depths. The change in the d37Cl values before and after backarc spreading may reflect either a tectonically induced change in the mechanism of serpentinite formation on the oceanic plate, or possibly the integration of isotopically positive wedge serpentinite as arc fluid source during the Neogene. Our study suggests that serpentinites are important fluid sources at arc front depth, and implies the return of isotopically positive and negative Cl from the Earth surface to the mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk chlorine concentrations and chlorine stable isotope compositions were determined for hydrothermally altered basalt (extrusive lavas and sheeted dikes) and gabbro samples (n = 50) from seven DSDP/ODP/IODP drill sites. These altered oceanic crust (AOC) samples span a range of crustal ages, tectonic settings, alteration type, and crustal depth. Bulk chlorine concentrations range from < 0.01 wt.% to 0.09 wt.%. In general, higher chlorine concentrations coincide with an increase in temperature of alteration and amphibole content. d37Cl values of whole rock AOC samples range from -1.4 to +1.8 per mil. High d37Cl values (>=~0.5 per mil) are associated with areas of higher amphibole content. This observation is consistent with theoretical calculations that estimate amphibole should be enriched in 37Cl compared to co-existing fluid. Negative to near zero d37Cl values are found in areas dominated by clay minerals. Chlorine geochemistry is a rough indicator of metamorphic grade and mineralogy. AOC is a major Cl host in the subducting oceanic lithospheric slab. Here we show that bulk chlorine concentrations are ~3 times higher than previous estimates resulting in a greater contribution of Cl to the mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With ever increasing demands to strengthen existing reinforced concrete structures to facilitate higher loading due to change of use and to extend service lifetime, the use of fibre reinforced polymers (FRPs) in structural retrofitting offers an opportunity to achieve these aims. To date, most research in this area has focussed on the use of glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP), with relatively little on the use of basalt fibre reinforced polymer (BFRP) as a suitable strengthening material. In addition, most previous research has been carried out using simply supported elements, which have not considered the beneficial influence of in-plane lateral restraint, as experienced within a framed building structure. Furthermore, by installing FRPs using the near surface mounted (NSM) technique, disturbance to the existing structure can be minimised.
This paper outlines BFRP NSM strengthening of one third scale laterally restrained floor slabs which reflect the inherent insitu compressive membrane action (CMA) in such slabs. The span-to-depth ratios of the test slabs were 20 and 15 and all were constructed with normal strength concrete (~40N/mm2) and 0.15% steel reinforcement. 0.10% BFRP was used in the retrofitted samples, which were compared with unretrofitted control samples. In addition, the bond strength of BFRP bars bonded into concrete was investigated over a range of bond lengths with two different adhesive thicknesses. This involved using an articulated beam arrangement in order to establish optimum bond characteristics for use in strengthening slab samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precast prestressed concrete panels have been used in bridge deck construction in Iowa and many other states. To investigate the performance of these panels at abutment or pier diaphragm locations for bridges with various skew angles, a research program involving both analytical and experimental aspects, is being conducted. This interim report presents the status of the research with respect to four tasks. Task 1 which involves a literature review and two surveys is essentially complete. Task 2 which involved field investigations of three Iowa bridges containing precast panel subdecks has been completed. Based on the findings of these investigations, future inspections are recommended to evaluate potential panel deterioration due to possible corrosion of the prestressed strands. Task 3 is the experimental program which has been established to monitor the behavior of five configurations of full scale composite deck slabs. Three dimensional test and instrumentation frameworks have been constructed to load and monitor the slab specimens. The first slab configuration representing an interior panel condition is being tested and preliminary results are presented for one of these tests in this interim report. Task 4 involves the analytical investigation of the experimental specimens. Finite element methods are being applied to analytically predict the behavior of the test specimens. The first test configuration of the interior panel condition has been analyzed for the same loads used in the laboratory, and the results are presented herein. Very good correlation between the analytical and experimental results has occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A consciencialização ambiental vem assumindo um papel preponderante na construção civil. Nesse sentido, o desenvolvimento de materiais sustentáveis e ecológicos é essencial para a satisfação de fabricantes e consumidores, respeitando diversos requisitos: níveis reduzidos de poluição e toxicidade, durabilidade dos materiais, possibilidade de reutilização e/ou reciclagem, a proveniência das matérias-primas e a possibilidade de contaminação do ar no interior dos edifícios. As declarações ambientais de produto (DAP) permitem informar o consumidor do desempenho ambiental dos materiais dos produtos. Assim, ao longo de todo o processo de fabrico são registados os consumos de recursos e emissões ambientais e, através da metodologia de avaliação de ciclo de vida, é quantificada a contribuição resultante para impactes ambientais. Esta dissertação visa analisar os possíveis impactes ambientais no decurso do processo de produção de um pavimento flutuante de cortiça, constituído por cortiça, High Density Fibreboard (HDF) e acabamento de superfície, denominado Artcomfort Floating NPC e elaborar de um relatório de suporte, que servirá de base para a DAP do pavimento Artcomfort Floating NPC do sistema do Institut Bauen und Umwelt (IBU). Esta dissertação inclui um relatório de fundo, para a avaliação do ciclo de vida do pavimento flutuante Artcomfort Floating NPC da empresa Amorim Revestimentos, que servirá de base para a elaboração da declaração ambiental de produto (DAP) do mesmo. Para tal, recorreu-se ao software SimaPro para análise dos impactes ambientais das várias fases do processo de fabrico do pavimento em estudo, sendo as fases consideradas, a produção da camada base de cortiça aglomerada, camada backing de cortiça aglomerada, montagem da sanduiche, placa pintada, placa acabada e corte e embalagem. A fase que tem maior contribuição para os impactes ambientais do processo de fabrico do produto, em todas as categorias de impacte analisadas, com exceção da depleção dos recursos abióticos sem combustíveis fósseis, foi a fase de montagem da sanduiche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the origins of the architectural forms as expressed in the Homeric Mycenaean citadel. The Genesis of the Mycenaean Citadel is a philosophical quest which reveals the poetic dimension of the Mycenaean architecture. The Introduction deals with general theories on the subject of space, which converge into one, forming the spinal idea of the thesis. The ‘process of individuation’, the process by which a person becomes ‘in-dividual’ that is a separate, indivisible unity or ‘whole’, is a process of transformation and renewal which at collective level takes place within the citadel. This is built on the archetype which expresses both the nature of the soul as a microcosm and of the divinely ordered Cosmos. The confrontation of the rational ‘ego’ with the unconscious is the process which brings us to the ‘self’, that organising center of the human psyche which is symbolised through the centre of the citadel. . Chapter I refers to ‘the Archetype of the Mycenaean citadel’. The Mycenaean citadel, which is built on a certain pattern of placement and orientation in relation to landscape formations, reproduces images which belong to the category of the ‘archetypal mother’. On the other hand, its adjustment to a central point with ‘high’ significance, recalls the archetypal image of Shiva-Shakti. The citadel realises the concept of a Kantian ‘One-all embracing space’; it is a cosmogonic symbol but also a philosophical one. Chapter II examines the column in its dual meaning, which is expressed in one structure; column and capital unite within their symbolism the conscious and unconscious contents of the human psyche and express the archetype of wholeness and goal of the individuation process. 33 Chapter III is a philosophical research into the ‘symbolism of the triangle’, the sacred Pythagorean symbol which expresses certain cosmological beliefs about the relation between human nature and the divinely ordered Cosmos. The triangular slab over the Lion Gate is a representation of the Dionysiac ‘palingenesia’, that is the continuity of One life, which was central to the Mycenaean religion. Chapter IV deals with the tripartite ‘megaron’. The circular hearth within the four-columned hall expresses the ‘quaternity of the One’, one of the oldest religious symbols of humanity. Zeus is revealed in the ‘fiery monadic unit-cubit’ as an all-embracing god next to goddess Hestia, symbolised by the circular hearth. The ‘megaron’ expresses the alchemical quaternity and the triad but also the psychological stages of development in the process towards wholeness. In the Conclusions it is emphasised that the Mycenaean citadel was created as if in a repetition of a cosmogony. It is a ‘mandala’, the universal image which is identified with God-image in man. Moreover it is built in order to be experienced by its citizen in the process of his psychological transformation towards the ‘self’, the divine element within the psyche which unites with the divinely ordered Cosmos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The Calypso 4D Localization System gives the possibility to track the tumour during treatment, with no additional ionising radiation delivered. To monitor the patient continuously an array is positioned above the patient during the treatment. We intend to study, for various gantry angles, the attenuation effect of the array for 6- and 10 MV and flattening filter free (FFF) 6- and FFF 10 MV photon beams. Materials and methods: Measurements were performed using an ion chamber placed in a slab phantom positioned at the linac isocenter for 6 MV, 10 MV, FFF 6 MV and FFF 10 MV photon beams. Measurements were performed with and without array above the phantom for 0°, 10°, 20°, 40° and 50° beam angle for a True Beam STx linac, for 5×5 and 10×10 and 15×15 cm2 field size beams to evaluate the attenuation of the array. A VMAT treatment plan was measured using an ArcCheck with and without the array in the beam path. Results and discussion: Attenuation measured values were up to 3%. Attenuation values were between 1 and 2% with the exception of the 30°–50° gantry angles which were up to 3.3%. The ratio values calculated in the ArcCheck for relative dose and absolute dose 10 were both 1·00. Conclusion: Attenuation of the treatment beam by the Calypso array is within acceptable limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flanks of the Southeast Indian Ridge are characterized by anomalously low subsidence rates for the 0-25 Ma period: less than 300 m Ma(-1/2) between 101 degrees E and 120 degrees E and less than 260 m Ma(-1/2) within the Australian-Antarctic Discordance (AAD), between 120 degrees E and 128 degrees E. The expected along-axis variation in mantle temperature (similar to 50 degrees C) is too small to explain this observation, even when the temperature dependence of the mantle physical properties is accounted for. We successively analyze the effect on subsidence of different factors, such as variations in crustal thickness; the dynamic contribution of an old, detached slab supposedly present within the mantle below the AAD; and depletion in phi(m), a parameter here defined as the "ubiquitously distributed melt fraction" within the asthenosphere. These effects may all contribute to the observed, anomalously low subsidence rate of the ridge flanks, with the most significant contribution being probably related to the depletion in phi(m). However, these effects have a deep-seated origin that cannot explain the abruptness of the transition across the fracture zones that delineate the boundaries of the AAD, near 120 degrees E and near 128 degrees E, respectively.