687 resultados para SKELETAL MUSCLE MASS
Resumo:
Phosphodiesterase (PDE) inhibition reduces skeletal muscle atrophy, but the underlying molecular mechanism remains unclear. We used microdialysis to investigate the effects of different PDE inhibitors on interstitial tyrosine concentration as well as proteolytic activity and atrogenes expression in isolated rat muscle. Rolipram, a PDE-4-selective inhibitor, reduced the interstitial tyrosine concentration and rates of muscle protein degradation. The rolipram-induced muscle cAMP increase was accompanied by a decrease in ubiquitin proteasome system (UPS) activity and atrogin-1 mRNA, a ubiquitin-ligase involved in muscle atrophy. This effect was not associated with Akt phosphorylation but was partially blocked by a protein kinase A inhibitor. Fasting increased atrogin-1, MuRF-1 and LC3b expression, and these effects were markedly suppressed by rolipram. Our data suggest that activation of cAMP signaling by PDE-4 blockade leads to inhibition of UPS activity and atrogenes expression independently of Akt. These findings are important for identifying novel approaches to attenuate muscle atrophy. Muscle Nerve 44: 371-381, 2011
Resumo:
This study investigated the in vivo effects of the Bothrops Jararaca venom (BjV) on general metabolic profile and, specifically. oil muscle protein metabolism in rats. The crude venom (0.4 mg/kg body weight, IV) was infused in awake rats, and plasma activity of enzymes and metabolites levels were determined after 1, 2, 3, and 4 hours. BjV increased urea, lactate, and activities of creatine kinase. lactate dehydrogenase. and aspartate aminotransferase after 4 hours. The content of liver glycogen was reduced by BjV. Protein metabolism was evaluated by means of microdialysis technique and in isolated muscles. BjV induced increase in the muscle interstitial-arterial tyrosine concentration difference. indicating a high protein catabolism. The myotoxicity induced by this venom is associated with reduction of protein synthesis and increase in rates of overall proteolysis, which was accompanied by activation of lysosomal and ubiquitin-proteasome systems without changes in protein levels of cathepsins and ubiquitin-protein conjugates.
Resumo:
The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.
Resumo:
Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.
Resumo:
PURPOSE. Surgical recession of an extraocular muscle (EOM) posterior to its original insertion is a common form of strabismus surgery, weakening the rotational force exerted by the muscle on the globe and improving eye alignment. The purpose of this study was to assess myosin heavy chain (MyHC) isoform expression and satellite cell activity as defined by Pax7 expression in recessed EOMs of adult rabbits compared with that in muscles tenotomized but not recessed and with that in normal control muscles. METHODS. The scleral insertion of the superior rectus muscle was detached and sutured either 7 mm posterior to its original insertion site (recession surgery) or at the same site (tenotomy). One day before euthanatization, the rabbits received bromodeoxyuridine (BrdU) injections. After 7 and 14 days, selected EOMs from both orbits were examined for changes in fast, slow, neonatal, and developmental MyHC isoform expression, Pax7 expression, and BrdU incorporation. RESULTS. Recession and tenotomy surgery resulted in similar changes in the surgical EOMs. These included a decreased proportion of fast MyHC myofibers, an increased proportion of slow MyHC myofibers, and increased BrdU-positive satellite cells. Similar changes were seen in the non-operated contralateral superior rectus muscles. The ipsilateral inferior rectus showed reciprocal changes to the surgical superior rectus muscles. CONCLUSIONS. The EOMs are extremely adaptive to changes induced by recession and tenotomy surgery, responding with modulations in fiber remodeling and myosin expression. These adaptive responses could be manipulated to improve surgical success rates. (Invest Ophthalmol Vis Sci. 2010;51:5646-5656) DOI:10.1167/iovs.10-5523
Resumo:
We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.
Resumo:
Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Resumo:
The four known tropomyosin genes have highly conserved DNA and amino acid sequences, and at least 18 isoforms are generated by alternative RNA splicing in muscle and non-muscle cells. No rabbit tropomyosin nucleotide sequences are known, although protein sequences for alpha- and beta-tropomyosin expressed by rabbit skeletal muscle have been described. Subtractive hybridisation was used to select for genes differentially expressed in rabbit aortic smooth muscle cells (SMC), during the change in cell phenotype in primary culture that is characterised by a loss of cytoskeletal filaments and contractile proteins. This led to the cloning of a tropomyosin gene predominantly expressed in rabbit SMC during this change. The full-length cDNA clone, designated rabbit TM-beta, contains an open reading frame of 284 amino acids, 5' untranslated region (UTR) of I 17 base pairs and 3' UTR of 79 base pairs. It is closely related to the beta-gene isoforms in other species, with the highest homology in DNA and protein sequences to the human fibroblast isoform TM-1 (91.7% identity in 1035 bp and 93.3% identity in the entire 284 amino acid sequence of the protein), It differs from rabbit skeletal muscle P-tropomyosin (81.7% homology at the protein level) mainly in two regions at amino acids 189-213 and 258-283 suggesting alternative splicing of exons 6a for 6b and 9d for 9a. Since this TM-P gene was the only gene strongly enough expressed in SMC changing phenotype to be observed by the subtractive hybridisation screen, it likely plays a significant role in this process. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Purpose: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. Methods: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; (V)over dot O-2peak = 64.5 +/- 5.2 mL.kg(-1).min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption ((V)over dotO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T-max) at their (V)over dotO(2peak) power output (P-max), as well as 3) a 40-kin time-trial (TT40). Subjects were matched and assigned to one of four training groups (G(1), N = 8, 8 X 60% T-max P-max, 1:2 work:recovery ratio; G(2), N = 9, 8 X 60% T-max at P-max, recovery at 65% HRmax; G(3), N = 10, 12 X 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1) G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. Results: All HIT groups improved TT40 performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to + 1.1 %; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their (V)over dot O-2peak significantly more than G(CON) (+ 1.0%; P < 0.05). Conclusion: The present study has shown that when HIT incorporates P-max as the interval intensity and 60% of T-max as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P
Resumo:
In mammals, prolonged immobilization of the limbs can result in a loss of capillary tortuosity, resulting in skeletal muscle haemorrhaging if rapid remobilization is permitted. In this study, we examined the effect of 4 months' immobilization on semimembranosus capillary structure in the Green-striped burrowing frog, Cyclorana alboguttata. C alboguttata routinely aestivates as part of a physiological strategy to avoid desiccation in semi-arid environments and, in this capacity, the hindlimbs of C alboguttata are immobilized in a cocoon for months at a time. We found that 4 months' aestivation had no effect on three-dimensional capillary structure in the semimembranosus muscle and that capillary tortuosity is preserved in immobilized C. alboguttata. The preservation of capillary structure in the hindlimb muscles of C alboguttata in part accounts for their remarkable ability to emerge with a fully competent locomotor system after prolonged immobilization.
Resumo:
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.
Resumo:
The results discussed in this thesis originated the following communications in International and National congresses: Sacramento JF, Coelho JC, Melo BF, Guarino MP and Conde SV. (2014) Assessment of caffeine dose and time of administration required for resetting insulin sensitivity in high sucrose diet in rats. 50th Meeting of EASD (European Association for the study of Diabetes), 14-19 September, Vienna, Austria Coelho JC, Melo BF, Sacramento JF, Guarino MP and Conde SV (2014). Establishing the caffeine dose that chronically restores insulin sensitivity in animal model of prediabetes. Fundação Astrazeneca Innovate Competition, iMed conference 6.0®, 10-12 October, Lisboa, Portugal Also, during the last year I was involved in other ongoing projects that originated the following communications: Coelho JC, Melo BF, Sacramento JF, Ribeiro MJ, Guarino MP and Conde SV (2014). Are the effects of carotid sinus nerve resection on insulin sensitivity mediated by an increase in Glut4 expression in skeletal muscle?. XLIV Reunião Anual da Sociedade Portuguesa de Farmacologia, XXXII Reunião de Farmacologia Clínica e XIII Reunião de Toxicologia, 5-7 February, Coimbra, Portugal Sacramento JF, Rodrigues T, Coelho JC, Matafome P, Ribeiro MJ, Seiça RM, Guarino MP, Conde SV (2014). Elucidating the mechanism by which carotid sinus nerve resection restores insulin sensitivity in pre-diabetes animal models. International Society for Arterial Chemoreception (ISAC) XIX University of Leeds, 29th June - 3rd July, Leeds, United Kingdom
Resumo:
RESUMO:Contexto: A avaliação do estado de nutrição do doente com indicação para transplante hepático (TH) deve ser abrangente, considerando o amplo espetro de situações clínicas e metabólicas. As alterações metabólicas relacionadas com a doença hepática podem limitar a aplicação de métodos de avaliação nutricional, subestimando a desnutrição. Após o TH, é expectável a reversão dos distúrbios metabólicos da doença hepática, pela melhoria da função do fígado. No entanto, algumas complicações metabólicas podem surgir após o TH, relacionadas com a má-nutrição, a desnervação hepática e o uso prolongado de imunossupressão, comprometendo os resultados clínicos a longo-prazo. A medição longitudinal e confiável do metabolismo energético e dos compartimentos corporais após o TH, avaliada em conjunto com fatores influentes no estado de nutrição, pode identificar precocemente situações de risco e otimizar e individualizar estratégias clínicas e nutricionais com vantagens no prognóstico. Objetivo: Avaliar longitudinalmente, a curto prazo, o estado de nutrição após o TH em doentes com insuficiência hepática por doença crónica e identificar os fatores, para além da cirurgia, que determinam diferentes evoluções do metabolismo energético e da composição corporal. Métodos: Foi estudada uma coorte de indivíduos com indicação para TH por doença hepática crónica, admitidos consecutivamente para TH ortotópico eletivo, durante 2 anos. Foram programados 3 momentos de avaliação: na última consulta pré-TH (T0), logo que adquirida autonomia respiratória e funcional após o TH (T1) e um mês após o TH (T2). Nesses momentos, foram medidos no mesmo dia: o suprimento nutricional por recordatório das últimas 24 horas, o estado de nutrição por Avaliação Subjetiva Global (ASG), o gasto energético em repouso (GER) por calorimetria indireta, a antropometria, a composição corporal por bioimpedância elétrica tetrapolar multifrequências e a força muscular por dinamometria de preensão palmar. O índice de massa magra (IMM) e a massa celular corporal (MCC) foram usados como indicadores do músculo esquelético e a percentagem de massa gorda (%MG) e o índice de massa gorda (IMG) como indicadores de adiposidade. O GER foi comparado com o estimado pelas fórmulas de Harris-Benedict para classificação do estado metabólico em:hipermetabolismo (GER medido >120% do GER estimado), normometabolismo (GER medido entre 80 e 120% do GER estimado) e hipometabolismo (GER medido <80% do GER estimado). Foi utilizada análise multivariável: por regressão logística, para identificar variáveis associadas à possibilidade (odds ratio – OR) de pertencer a cada grupo metabólico pré-TH; por regressão linear múltipla, para identificar variáveis associadas à variação dos compartimentos corporais no período pós-TH; e por modelos de efeitos mistos generalizados, para identificar variáveis associadas à evolução do GER e dos compartimentos corporais entre o período pré- e pós-TH. Resultados: Foram incluídos 56 indivíduos com idade, média (DP), 53,7 (8,5) anos, 87,5% do sexo masculino, 23,2% com doença hepática crónica de etiologia etanólica. Após o TH, em 60,7% indivíduos foi administrado regime imunossupressor baseado no tacrolimus. Os indivíduos foram avaliados [mediana (AIQ)] 90,5 (P25: 44,2; P75: 134,5) dias antes do TH (T0), 9,0 (P25: 7,0; P75: 12,0) dias após o TH (T1) e 36,0 (P25: 31,0; P75: 43,0) dias após o TH (T2). Após o TH houve melhoria significativa do estado de nutrição, com diminuição da prevalência de desnutrição classificada pela ASG (37,5% em T0, 16,1% em T2, p<0,001). Antes do TH, 41,1% dos indivíduos eram normometabólicos, 37,5% hipometabólicos e 21,4% hipermetabólicos. A possibilidade de pertencer a cada grupo metabólico pré-TH associou-se à: idade (OR=0,899, p=0,010) e desnutrição pela ASG (OR=5,038, p=0,015) para o grupo normometabólico; e índice de massa magra (IMM, OR=1,264, p=0,049) e etiologia viral da doença hepática (OR=8,297, p=0,019) para o grupo hipermetabólico. Não se obteve modelo múltiplo para o grupo de hipometabólico pré-TH, mas foram identificadas associações univariáveis com a história de toxicodependência (OR=0,282, p=0,047) e com a sarcopénia pré- TH (OR=8,000, p=0,040). Após o TH, houve normalização significativa e progressiva do estado metabólico, indicada pelo aumento da prevalência de normometabolismo (41,1% em T0, 57,1% em T2, p=0,040). Foram identificados diferentes perfis de evolução do GER após o TH, estratificado pelo estado metabólico pré-TH: no grupo hipometabólico pré-TH, o GER (Kcal) aumentou significativa e progressivamente (1030,6 em T0; 1436,1 em T1, p=0,001; 1659,2 em T2, p<0,001); no grupo hipermetabólico pré-TH o GER diminuiu significativa e progressivamente (2097,1 em T0; 1662,5 em T1, p=0,024; 1493,0 em T2, p<0.001); no grupo normometabólico não houve variações significativas. Os perfis de evolução do GER associaram-se com: peso corporal (β=9,6, p<0,001) e suprimento energético (β=13,6, p=0,005) na amostra total; com peso corporal (β=7,1, p=0,018) e contributo energético dos lípidos (β=18,9, p=0,003) no grupo hipometabólico pré-TH; e com peso corporal (β=14,1, p<0,001) e desnutrição pela ASG (β=-171,0, p=0,007) no grupo normometabólico pré-TH.Houve redução transitória dos compartimentos corporais entre T0 e T1, mas a maioria destes recuperou para valores semelhantes aos pré-TH. As exceções foram a água extracelular, que diminuiu entre T0 e T2 (média 18,2 L e 17,8 L, p=0,042), a massa gorda (média 25,1 Kg e 21,7 Kg, p<0,001) e o IMG (média 10,6 Kg.m-2 e 9,3 Kg.m-2, p<0,001) que diminuíram entre T1 e T2. Relativamente à evolução dos indicadores de músculo esquelético e adiposidade ao longo do estudo: a evolução do IMM associou-se com força de preensão palmar (β=0,06, p<0,001), creatininémia (β=2,28, p<0,001) e número total de fármacos administrados (β=-0,21, p<0,001); a evolução da MCC associou-se com força de preensão palmar (β=0,16, p<0,001), creatininémia (β=4,17, p=0,008) e número total de fármacos administrados (β=-0,46, p<0,001); a evolução da %MG associou-se com força de preensão palmar (β=-0,11, p=0,028), história de toxicodependência (β=-5,75, p=0,024), creatininémia (β=-5,91, p=0,004) e suprimento proteico (β=-0,06, p=0,001); a evolução do IMG associou-se com história de toxicodependência (β=- 2,64, p=0,019), creatininémia (β=-2,86, p<0,001) e suprimento proteico (β=-0,02, p<0,001). A variação relativa (%Δ) desses compartimentos corporais entre T1 e T2 indicou o impacto da terapêutica imunossupressora na composição corporal: o regime baseado na ciclosporina associou-se positivamente com a %Δ do IMM (β=23,76, p<0,001) e %Δ da MCC (β=26,58, p<0,001) e negativamente com a %Δ MG (β=-25,64, p<0,001) e %Δ do IMG (β=-25,62, p<0,001), relativamente ao regime baseado no tacrolimus. Os esteróides não influenciaram a evolução do GER nem com a dos compartimentos corporais. Conclusões: O estado de nutrição, avaliado por ASG, melhorou significativamente após o TH, traduzida pela diminuição da prevalência de desnutrição. O normometabolismo pré-TH foi prevalente e associou-se à menor idade e à desnutrição pré- TH. O hipometabolismo pré-TH associou-se à história de toxicodependência e à sarcopénia pré-TH. O hipermetabolismo pré-TH associou-se ao maior IMM e à etiologia viral da doença hepática. Após o TH, houve normalização progressiva do estado metabólico. Foram identificados três perfis de evolução do GER, associando-se com: peso corporal e suprimento energético na amostra total; peso corporal e contributo energético dos lípidos no grupo hipometabólico pré- TH; e peso corporal e desnutrição pela ASG no grupo normometabólico pré-TH. Foram identificados diferentes perfis de evolução da composição corporal após TH. A evolução do músculo esquelético associou-se positivamente com a força de preensão palmar e a creatininémia e negativamente com o número total de fármacos administrados. A evolução da adiposidade (%MG e IMG) associou-se inversamente com a história de toxicodependência, a creatininémia e o suprimento proteico; adicionalmente, a %MG associou-se inversamente com a força de preensão palmar. O regime baseado na ciclosporina associou-se independentemente com diminuição da adiposidade e aumento do músculo esquelético, comparativamente ao regime baseado no tacrolimus.---------------------------ABSTRACT:Background: The assessment of nutritional status in patients undergoing liver transplantation (LTx) should be comprehensive, accounting for the wide spectrum of the clinical and metabolic conditions. The metabolic disturbances related to liver disease may limit the precision and accuracy of traditional nutritional assessment methods underestimating the undernourishment. After LTx, it is expected that many metabolic derangements improve with the recovery of liver function. However, some metabolic complications arising after LTx, related to nutritional status, hepatic denervation, and prolonged immunosuppression, may compromise the longterm outcome. A reliable longitudinal assessment of both energy metabolism and body compartments after LTx, combined with assessments of other factors potentially affecting the nutritional status, may enable a better interpretation on the relationship between the metabolic and the nutritional status. These reliable assessments may precociously identify nutritional risk conditions and optimize and customize clinical and nutritional strategies improving the prognosis. Objective: To assess longitudinally the nutritional status shortly after orthotopic LTx in patients with chronic liver disease, and identify factors, beyond surgery, determining different energy metabolism and body composition profiles.Methods: A cohort of consecutive patients who underwent LTx due to chronic liver disease was studied within a period of two years. The assessments were performed in three occasions: at the last visit before LTx (T0), after surgery as soon as respiratory and functional autonomy was established (T1), and approximately one month after surgery (T2). On each occasion all assessments were performed on the same day, and included: the dietary assessment by 24- hour dietary recall, nutritional status by the Subjective Global Assessment (SGA), the resting energy expenditure (REE) by indirect calorimetry, anthropometry, body composition by multifrequency bioelectrical impedance analysis, and muscle strength by handgrip strength. Both the lean mass index (LMI) and body cell mass (BCM) were used as surrogates of skeletal muscle, and both the percentage of fat mass (%FM) and fat mass index (FMI) of adiposity. The REE was predicted according to the Harris and Benedict equation. Hypermetabolism was defined as a measured REE more than 120% of the predicted value; normometabolism as a measured REE within 80-120% of the predicted value; and hypometabolism as a measured REE less than 80% of the predicted value. Multiple regression analysis was used: by logistic regression to identify variables associated with odds of belong each pre-LTx metabolic groups; by linear multiple regression analysis to identify variables associated with body compartments relative variations (%Δ) in the post-LTx period; and by mixed effects models to identify variables associated with the REE and body compartments profiles pre- and post-LTx. Results: Fifty six patients with a mean (SD) of 53.7 (8.5) years of age were included, 87.5% were men and 23.2% with alcoholic liver disease. After LTx 60.7% individuals were assigned to tacrolimus-based immunosuppressive regimen. The patients were assessed at a median time (inter-quartil range) of 90.5 (P25 44.2; P75 134.5) days before LTx (T0), at a median time of 9.0 (P25 7.0; P75 12.0) (T1) and 36 (P25 31.0; P75 43.0) (T2) days after LTx. After LTx the nutritional status significantly improved: the SGA-undernourishment decreased from 37.5% (T0) to 16.1% (T2) (p<0.001). Before LTx, 41.1% patients were normometabolic, 37.5% hypometabolic, and 21.4% hypermetabolic. The predictors of each pre-LTx metabolic group were: age (OR=0.899, p=0.010) and SGA-undernourishment (OR=5.038, p=0.015) for the normometabolic group; and LMI (OR=1.264, p=0.049) and viral etiology of liver disease (OR=8.297, p=0.019) for the hypermetabolic group. No multiple model was found for the pre-LTx hypometabolic group, but univariate association was found with history of drug addiction (OR=0.282, p=0.047) and pre- LTx sarcopenia (OR=8.000, p=0.040). After LTx a significant normalization of the metabolic status occurred, indicated by the increase in the prevalence of normometabolic patients (from T0: 41.1% to T2: 57.1%, p=0.040). Different REE profiles were found with REE stratified by preoperative metabolic status: in the hypometabolic group a significant progressive increase in mean REE (Kcal) was observed (T0: 1030.6; T1: 1436.1, p=0.001; T2: 1659.2, p<0.001); in the hypermetabolic group, a significant progressive decrease in mean REE (Kcal) was observed (T0: 2097.1; T1: 1662.5, p=0.024; T2: 1493.0, p<0.001); and in the normometabolic group, no significant differences were found. The REE profiles were associated with: body weight (β- estimate=9.6, p<0.001) and energy intake (β-estimate=13.6, p=0.005) in the whole sample; with body weight (β-estimate=7.1, p=0.018) and %TEV from lipids (β-estimate=18.9, p=0.003) in the hypometabolic group; and with body weight (β-estimate=14.1, p<0.001), and SGAundernourishment (β-estimate=-171, p=0.007) in the normometabolic group. A transient decrease in most body compartments occurred from T0 to T1, with subsequent catch-up to similar preoperative values. Exceptions were the extracellular water, decreasing from T0 to T2 (mean 18.2 L to 17.8 L, p=0.042), the fat mass (mean 25.1 Kg to 21.7 Kg, p<0.001) and FMI (mean 10.6 Kg.m-2 to 9.3 Kg.m-2, p<0.001), decreasing from T1 to T2. Significant predictors of skeletal muscle and adiposity profiles were found: LMI evolution was associated with handgrip strength (β-estimate=0.06, p<0.001), serum creatinine (β- estimate=2.28, p<0.001) and number of medications (β-estimate=-0.21, p<0.001); BCM evolution was associated with handgrip strength (β-estimate=0.16, p<0.001), serum creatinine (β-estimate=4.17, p<0.001) and number of medications (β-estimate=-0.46, p<0.001); the %FM evolution was associated with handgrip strength (β-estimate=-0.11, p=0.028), history of drug addiction (β-estimate=-5.75, p=0.024), serum creatinine (β-estimate=-5.91, p=0.004) and protein intake (β-estimate=-0.06, p=0.001); and FMI evolution was associated with history of drug addiction (β-estimate=-2.64, p=0.019), serum creatinine (β-estimate=-2.86, p<0.001) and protein intake (β-estimate=-0.02, p<0.001). The %Δ of the aforementioned body compartments from T1 to T2 indicated the influence of immunosuppressive agents on body composition: the cyclosporine-based regimen, compared with tacrolimus-based regimen, was positively associated with %Δ LMI (β-estimate=23.76, p<0.001) and %Δ BCM (β- estimate=26.58, p<0.001), and inversely associated with %Δ FM (β-estimate=-25.64, p<0.001) and %Δ FMI (β-estimate=-25.62, p<0.001). No significant changes in REE or body composition were observed associated with dose or duration of steroid therapy. Conclusions: The SGA-assessed nutritional status improved shortly after LTx, with significant decrease in prevalence undernourished individuals. XXI Preoperative normometabolism was prevalent and was associated with younger age and SGAundernourishment before LTx. Preoperative hypometabolism was associated with history of drug addiction and pre-LTx sarcopenia. Preoperative hypermetabolism was associated with higher LMI and viral etiology of liver disease. A significant normalization of the metabolic status was observed after LTx. The REE profiles were positively predicted by body weight and energy intake in the whole sample, by body weight and percentage of energy intake from lipids in the preoperative hypometabolic patients, and by body weight and SGA–undernourishment in the preoperative normometabolic patients. Different body composition profiles were found after LTx. Skeletal muscle profile was positively associated with handgrip strength and serum creatinine, and inversely with the number of medications. The adiposity profile was inversely associated with history of drug addiction, serum creatinine and protein intake. Additionally, the %FM evolution was inversely associated with handgrip strength. The cyclosporine-based regimen, compared with tacrolimus-based regimen, was independently associated with skeletal muscle increase and adiposity decrease.