890 resultados para SCTP (Protocol of Communication Network)
Resumo:
This paper is dedicated to modelling of network maintaining based on live example – maintaining ATM banking network, where any problems are mean money loss. A full analysis is made in order to estimate valuable and not-valuable parameters based on complex analysis of available data. Correlation analysis helps to estimate provided data and to produce a complex solution of increasing network maintaining effectiveness.
Resumo:
In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.
Resumo:
Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.
Resumo:
Innovation is one of the key drivers for gaining competitive advantages in any firms. Understanding knowledge transfer through inter-firm networks and its effects on types of innovation in SMEs is very important in improving SMEs innovation. This study examines relationships between characteristics of inter-firm knowledge transfer networks and types of innovation in SMEs. To achieve this, social network perspective is adopted to understand inter-firm knowledge transfer networks and its impact on innovation by investigating how and to what extend ego network characteristics are affecting types of innovation. Therefore, managers can develop the firms'network according to their strategies and requirements. First, a conceptual model and research hypotheses are proposed to establish the possible relationship between network properties and types of innovation. Three aspects of ego network are identified and adopted for hypotheses development: 1) structural properties which address the potential for resources and the context for the flow of resources, 2) relational properties which reflect the quality of resource flows, and 3) nodal properties which are about quality and variety of resources and capabilities of the ego partners. A questionnaire has been designed based on the hypotheses. Second, semistructured interviews with managers of five SMEs have been carried out, and a thematic qualitative analysis of these interviews has been performed. The interviews helped to revise the questionnaire and provided preliminary evidence to support the hypotheses. Insights from the preliminary investigation also helped to develop research plan for the next stage of this research.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
This article investigates the attitudes to inter-firm co-operation in Hungary by analysing a special group of business networks: the business clusters. Following an overview of cluster policy, a wide range of selfproclaimed business clusters are identified. A small elite of these business networks evolves into successful, sustainable innovative business clusters. However, in the majority of cases, these consortia of interfirm co-operation are not based on a mutually satisfactory model, and as a consequence, many clusters do not survive in the longer term. The paper uses the concepts and models of social network theory in order to explain, why and under what circumstances inter-firm co-operation in clusters enhances the competitiveness of the network as a whole, or alternatively, under what circumstances the cluster remains dependent on Government subsidies. The empirical basis of the study is a thorough internet research about the Hungarian cluster movement; a questionnaire based expert survey among managers of clusters and member companies and a set of in-depth interviews among managers of self-proclaimed clusters. The last chapter analyises the applicability of social network theory in the analysis of business networks and a model involving the value chain is recommended.
Resumo:
Network analysis has emerged as a key technique in communication studies, economics, geography, history and sociology, among others. A fundamental issue is how to identify key nodes in a network, for which purpose a number of centrality measures have been developed. This paper proposes a new parametric family of centrality measures called generalized degree. It is based on the idea that a relationship to a more interconnected node contributes to centrality in a greater extent than a connection to a less central one. Generalized degree improves on degree by redistributing its sum over the network with the consideration of the global structure. Application of the measure is supported by a set of basic properties. A sufficient condition is given for generalized degree to be rank monotonic, excluding counter-intuitive changes in the centrality ranking after certain modifications of the network. The measure has a graph interpretation and can be calculated iteratively. Generalized degree is recommended to apply besides degree since it preserves most favorable attributes of degree, but better reflects the role of the nodes in the network and has an increased ability to distinguish between their importance.
Resumo:
On January 28-30, 2015 Corvinus University of Budapest hosted the latest workshop of the Regional Studies Association’s Tourism Research Network. The event had been held previously in Izmir, Aalborg, Warsaw, Östersund, Antalya, Leeds and Vila-seca Catalonia. The aim of the RSA research network is to examine tourism diversity from the perspective of regional development in order to identify current challenges and opportunities in a systematic manner, and hence provide the basis for a more well-informed integration of tourism in regional development strategies and move beyond political short-termism and buzzword fascination. In the frame of the network a series of workshops have been organised from various topics of destination management till rural tourism.
Resumo:
Internet Protocol Television (IPTV) is a system where a digital television service is delivered by using Internet Protocol over a network infrastructure. There is considerable confusion and concern about the IPTV, since two different technologies have to be mended together to provide the end customers with some thing better than the conventional television. In this research, functional architecture of the IPTV system was investigated. Very Large Scale Integration based system for streaming server controller were designed and different ways of hosting a web server which can be used to send the control signals to the streaming server controller were studied. The web server accepts inputs from the keyboard and FPGA board switches and depending on the preset configuration the server will open a selected web page and also sends the control signals to the streaming server controller. It was observed that the applications run faster on PowerPC since it is embedded into the FPGA. Commercial market and Global deployment of IPTV were discussed.
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
By integrating the research and resources of hundreds of scientists from dozens of institutions, network-level science is fast becoming one scientific model of choice to address complex problems. In the pursuit to confront pressing environmental issues such as climate change, many scientists, practitioners, policy makers, and institutions are promoting network-level research that integrates the social and ecological sciences. To understand how this scientific trend is unfolding among rising scientists, we examined how graduate students experienced one such emergent social-ecological research initiative, Integrated Science for Society and Environment, within the large-scale, geographically distributed Long Term Ecological Research (LTER) Network. Through workshops, surveys, and interviews, we found that graduate students faced challenges in how they conceptualized and practiced social-ecological research within the LTER Network. We have presented these conceptual challenges at three scales: the individual/project, the LTER site, and the LTER Network. The level of student engagement with and knowledge of the LTER Network was varied, and students faced different institutional, cultural, and logistic barriers to practicing social-ecological research. These types of challenges are unlikely to be unique to LTER graduate students; thus, our findings are relevant to other scientific networks implementing new social-ecological research initiatives.
Resumo:
Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.
Resumo:
Erasure control coding has been exploited in communication networks with an aim to improve the end-to-end performance of data delivery across the network. To address the concerns over the strengths and constraints of erasure coding schemes in this application, we examine the performance limits of two erasure control coding strategies, forward erasure recovery and adaptive erasure recovery. Our investigation shows that the throughput of a network using an (n, k) forward erasure control code is capped by r =k/n when the packet loss rate p ≤ (te/n) and by k(l-p)/(n-te) when p > (t e/n), where te is the erasure control capability of the code. It also shows that the lower bound of the residual loss rate of such a network is (np-te)/(n-te) for (te/n) < p ≤ 1. Especially, if the code used is maximum distance separable, the Shannon capacity of the erasure channel, i.e. 1-p, can be achieved and the residual loss rate is lower bounded by (p+r-1)/r, for (1-r) < p ≤ 1. To address the requirements in real-time applications, we also investigate the service completion time of different schemes. It is revealed that the latency of the forward erasure recovery scheme is fractionally higher than that of the scheme without erasure control coding or retransmission mechanisms (using UDP), but much lower than that of the adaptive erasure scheme when the packet loss rate is high. Results on comparisons between the two erasure control schemes exhibit their advantages as well as disadvantages in the role of delivering end-to-end services. To show the impact of the bounds derived on the end-to-end performance of a TCP/IP network, a case study is provided to demonstrate how erasure control coding could be used to maximize the performance of practical systems. © 2010 IEEE.