996 resultados para SC(III)
Resumo:
One mu-dichloro bridged diiridium complex and three mononuclear iridium(III) complexes based on the 1,3,4-oxadiazole derivatives as cyclometalated ligands and acetylacetonate (acac) or dithiolates O,O'-diethyldithiophosphate (Et(2)dtp) or N,N'-diethyldithiocarbamate (Et(2)dtc) as ancillary ligands have been synthesized and systematically studied by X-ray diffraction analysis. The results reveal that three mononuclear complexes all adopt distorted octahedral coordination geometry around the iridium center by two chelating ligands with cis-C-C and trans-N-N dispositions, which have the same coordination mode as the diiridium dimer. The dinuclear complex crystallizes in the monoclinic system and space group C2/c, whereas three mononuclear iridium complexes are all triclinic system and space group P(1) over bar. In the stacking structure of the dimer, one-dimensional tape-like chains along the b-axis are formed by hydrogen bondings, which are strengthened by pi stacking interactions between phenyl rings of 1,3,4-oxadiazole ligands. Then these chains assemble a three-dimensional alternating peak and valley fused wave-shape structure. In each stacking structure of three mononuclear complexes, two molecules form a dimer by the C-H center dot center dot center dot O hydrogen bondings, and these dimers are connected by pi stacking interactions along the b-axis, constructing a zigzag chain.
Resumo:
A binary catalyst system of a chiral (R,R)-SalenCo(III)(2,4-dinitrophenoxy) (salen = N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-diphenylethylenediimine) in conjunction with (4-dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac-PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h(-1) and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as-prepared products were characterized by the IR, H-1 NMR, C-13 NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions.
Resumo:
The extraction and separation of Ho, Y, and Er(III) with the mixtures of bis(2,4,4-trimetylpentyl)monothiophosphinic acid (Cyanex 302) and another organic extractant, such as acidic organic extractant (di-2-ethylhexyl phosphoric acid P204, 2-ethythexyl phosphoric acid mono-2-ethylhexyl ester P507, di-2-ethylhexyl phosphinic acid P229, and sec-nonylphenoxy acetic acid CA-100), neutral organic extractant (tri-n-butyl phosphate TBP, di-(1-metylheptyl)metyl phosphate P350, and branched trialkylphosphinic oxide Cyanex 925) or primary amine N1923, has been investigated in this paper. The extractability and separation ability for the Ho, Y, and Er with the mixtures of Cyanex 302 and organic extractants has been compared. The synergistic effect of the Ho, Y, and Er extraction with the mixtures of Cyanex 302 and P229, Cyanex 925, CA-100, or N1923 has been explored and the synergistic enhancement coefficients have been calculated. At last, the Y3+ synergistic extraction with the mixtures of Cyanex 302 and CA-100 has been determined and the extracted complex has been deduced.
Resumo:
We successfully prepared a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) core-shell nanoparticle. It was found that Tb(III) mainly bonded to 0 of the carbonyl groups of PNNS, forming the novel (PNIPAM-g-P(NIPAM-co-St))-Tb(III) (PNNS-Tb(III)) complex. The maximum emission intensity of the complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. When the weight ratio of Tb(III) and the PNNS-Tb(III) complex is 1.2 wt.%, the enhancement of the emission fluorescence intensity at 545 nm is highest.
Resumo:
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free-energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear-induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range.
Resumo:
The multi-layered electroluminescent device consisting of Eu(TTA)(3)(2,2'-bipyridine mono N-oxide) (TTA = 2-thenoyltrifluoroacetonate) as the red dopant exhibited an impressive current and power efficiency at a brightness of 100 cd m(-2) and voltage-independent spectral stability.
Resumo:
The crystal structure of Eu(TFPB)(3)bpy [TFPB: 4,4,4-trifluoro-1-phenyl-1,3-butanedione, bpy: 2,2'-bipyridyl] has been determined by single crystal X-ray diffraction and the coordination geometry of Eu atom is a square antiprism. The complex can give the characteristic luminescence of Eu3+ upon UV excitation.
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.
Resumo:
The extraction and stripping kinetics of yttrium(III) with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane as an acid extractant have been investigated by constant interfacial cell with laminar flow. The experimental hydrodynamic conditions have been chosen so that the contribution of diffusion to the measured rate of reaction is minimized. The plot of interfacial area on the rate has shown a linear relationship, which makes the interface the most probable local for the chemical reactions. At the same time, the extraction thermodynamic and kinetic methods are compared to determine the equilibrium extraction constant. A rate equation and the rate-determining step of the extraction and stripping of yttrium(III) have also been obtained, respectively.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.
Resumo:
The extraction behaviour of Ce(IV), Th(IV) and part of RE(III), viz., La, Ce, Nd and Yb, has been investigated using di(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP,B) in heptane as an extractant. Results show that extractability varies in the order: Ce(IV) > Th(IV) much greater than RE(III). Therefore, it is possible to find the appropriate conditions under which Ce(IV) can be effectively separated from Th(IV) and RE(III). Furthermore, stripping Ce(IV) from the loaded organic phase can be carried out by dilute H2SO4 with an aliquot of H2O2.Roasted bastnasite made in Baotou (China) by Na2CO3 and leached by HNO3, there is about 50% Ce mainly as tetravalent nitrate along with other RE(III) and Th(IV) in the leachings. Through fractional extraction, taking nitric acid leachings of roasted Bastnasite as feed and DEHEHP as an extractant, we can obtain the CeO2 products with high purity of 99.9-99.99%, with a yield of >85%, in which ThO2/CeO2 < 10(-4).
Resumo:
The title bimetallic compound, [Yb-4(mu(3)-OH)(4)(C6H13NO2)(7)-(H2O)(7)][ZnCl4][ZnCl3(OH)]Cl-4.8H(2)O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water molecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight-coordinate square-antiprismatic coordination. The Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) cation, the [ZnCl4](2-), [ZnCl3OH](2-) and Cl- anions, and the lattice water molecules are linked via hydrogen bonds.
Resumo:
The title complex, [Sm-2(C6H13NO2)(4)(H2O)(8)](ClO4)(6), contains dimeric [Sm-2(Ile)(4)(H2O)(8)](6+) cations (Ile is L-isoleucine) and perchlorate anions. The two Sm3+ cations lie on a crystallographic twofold rotation axis. The four isoleucine molecules act as bridging ligands, linking two Sm3+ ions through their carboxyl O atoms. Each Sm3+ ion is also coordinated by four water molecules to complete eightfold coordination in a square antiprismatic fashion. One of the three perchlorate anions in the asymmetric unit is disordered.
Resumo:
The speciation and distribution of Gd(III) in human interstitial fluid was studied by computer simulation. The results show that at the background concentration, all the Gd(III) species are soluble and no precipitates appear. However as the total concentration of Gd(III) rises above 2.610 x 10(-9) mol/l the insoluble species become predominant. GdPO4 is formed first as a precipitate and then Gd-2(CO3)(3). Among soluble species, free Gd(III), [Gd(HSA)], [Gd(Ox)] and the ternary complexes of Gd(III) with citrate as the primary ligand are main species when the total concentration of Gd(III) is below 2.074 x 10(-2) mol/l. With the total concentration of Gd(III) further rising, [Gd-3(OH)(4)] begins to appear and gradually becomes a predominant species.
Resumo:
Two gadolinium-sandwiched complexes with tungstosilicates, K-13[Gd(SiW11O39)(2)] (Gd(SiW11)(2)) and K11H6[Gd2O3(SiW9O34)(2)] (Gd-3(SiW9)(2)), have been investigated by in vitro and in vivo experiments as potential contrast agents for magnetic resonance imaging (MRI). T-1-relaxivity of Gd(SiW11)(2)was 6.59 mM(-1) . s(-1) in aqueous solution and 6.85 mM(-1) . s(-1) in 0.725 mmol . L-1 bovine serum albumin solution at 25degreesC and 9.39 T, respectively. The corresponding T-1-relaxivity of Gd-3(SiW9)(2) was 12.6 and 19.3 mM(-1) . s(-1) per Gd, respectively. MRI for Sprague-Dawley rats showed longer and more remarkable enhancement in rat liver after i.v. injection of these two complexes: 39.4 +/- 3.9% and 57.4 +/- 11.6% within the first 30 min after injection, 31.2 +/- 2.6% and 39.9 +/- 7.6% in the next 60 min for Gd(SiW11)(2) and Gd-3(SiW9)(2) at doses of 0.081 and 0.084 mmol Gd/kg, respectively. Our preliminary in vitro and in vivo study indicates that Gd(SiW11)(2) and Gd-3(SiW9)(2) are favorable candidates for hepatic contrast agents for MRI. However, the two complexes exhibit higher acute toxicity and need to be modified and studied further before clinical use.