961 resultados para Response models
Resumo:
This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.
Resumo:
The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.
Resumo:
Tyrpsine kinase inhibitors (TKIs) effectively target progenitors and mature leukaemic cells but prove less effective at eliminating leukaemic stem cells (LSCs) in patients with chronic myeloid leukaemia (CML). Several reports indicate that the TGFβ superfamily pathway is important for LSC survival and quiescence. We conducted extensive microarray analyses to compare expression patterns in normal haemopoietic stem cells (HSC) and progenitors with CML LSC and progenitor populations in chronic phase (CP), accelerated phase (AP) and blast crisis (BC) CML. The BMP/SMAD pathway and downstream signalling molecules were identified as significantly deregulated in all three phases of CML. The changes observed could potentiate altered autocrine signalling, as BMP2, BMP4 (p<0.05), and ACTIVIN A (p<0.001) were all down regulated, whereas BMP7, BMP10 and TGFβ (p<0.05) were up regulated in CP. This was accompanied by up regulation of BMPRI (p<0.05) and downstream SMADs (p<0.005). Interestingly, as CML progressed, the profile altered, with BC patients showing significant over-expression of ACTIVIN A and its receptor ACVR1C. To further characterise the BMP pathway and identify potential candidate biomarkers within a larger cohort, expression analysis of 42 genes in 60 newly diagnosed CP CML patient samples, enrolled on a phase III clinical trial (www.spirit-cml.org) with greater than 12 months follow-up data on their response to TKI was performed. Analysis revealed that the pathway was highly deregulated, with no clear distinction when patients were stratified into good, intermediate and poor response to treatment. One of the major issues in developing new treatments to target LSCs is the ability to test small molecule inhibitors effectively as it is difficult to obtain sufficient LSCs from primary patient material. Using reprogramming technologies, we generated induced pluripotent stem cells (iPSCs) from CP CML patients and normal donors. CML- and normal-derived iPSCs were differentiated along the mesodermal axis to generate haemopoietic and endothelial precursors (haemangioblasts). IPSC-derived haemangioblasts exhibited sensitivity to TKI treatment with increased apoptosis and reduction in the phosphorylation of downstream target proteins. 4 Dual inhibition studies were performed using BMP pathway inhibitors in combination with TKI on CML cell lines, primary cells and patient derived iPSCs. Results indicate that they act synergistically to target CML cells both in the presence and absence of BMP4 ligand. Inhibition resulted in decreased proliferation, irreversible cell cycle arrest, increased apoptosis, reduced haemopoietic colony formation, altered gene expression pattern, reduction in self-renewal and a significant reduction in the phosphorylation of downstream target proteins. These changes offer a therapeutic window in CML, with intervention using BMP inhibitors in combination with TKI having the potential to prevent LSC self-renewal and improve outcome for patients. By successfully developing and validating iPSCs for CML drug screening we hope to substantially reduce the reliance on animal models for early preclinical drug screening in leukaemia.
Resumo:
Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Resumo:
Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).
Resumo:
Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
Cardiomyopathies are a heterogeneous group of myocardial disorders defined by structural and functional alterations of the heart. These cardiac diseases can have both non-genetic and genetic origin. Nevertheless, a different etiology can trigger the same phenotype, as in the case of anthracycline-induced cardiotoxicity and desmin-related cardiomyopathy (DRM). Therefore, the aim of this study was to investigate the cellular mechanisms driving the development of these cardiotoxic conditions in in vitro models. Doxorubicin (DOX) is a commonly used antineoplastic drug for the treatment of a wide range of tumors. Besides, its clinical use is restricted because of dose-dependent cardiotoxicity. Our findings provided evidence that phospholipase C Beta 2 (PLCβ2) may have a critical role in DOX-induced cardiotoxicity in undifferentiated and differentiated H9c2 cell line. Interestingly, the results obtained revealed that cardiomyocytes are less sensitive to DOX, following the evaluation of cellular mechanisms such as: oxidative stress, apoptosis and cell proliferation. Nonetheless, the treatment induced a significant upregulation of PLCβ2 associated to morphological changes in both models, demonstrating the implication in a hypertrophic response. On the other hand, a hereditary DRM was associated to a missense mutation of aB crystallin (CRYAB), a chaperone protein involved in the regulation of the intermediate filament network. Since research has only been conducted on transgenic (TG) mice and neonatal rat cardiomyocytes, this study aimed at investigating cellular mechanisms triggered by CRYABR120G mutation in a hiPSC-derived DRM model. Our model confirmed the impairment of the cytoskeletal organization resulting in the formation of desmin and CRYAB aggregates and myofibril misalignment. Moreover, the missense mutation confirmed a hypertrophic cardiomyopathy phenotype, a feature of DRM patients, on cardiac engineered tissues. Lastly, these data obtained suggest that further research on PLCβ2 and CRYAB are needed to comprehend the molecular mechanisms behind the development of these 2 cardiac diseases.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.
Resumo:
In the field of educational and psychological measurement, the shift from paper-based to computerized tests has become a prominent trend in recent years. Computerized tests allow for more complex and personalized test administration procedures, like Computerized Adaptive Testing (CAT). CAT, following the Item Response Theory (IRT) models, dynamically generates tests based on test-taker responses, driven by complex statistical algorithms. Even if CAT structures are complex, they are flexible and convenient, but concerns about test security should be addressed. Frequent item administration can lead to item exposure and cheating, necessitating preventive and diagnostic measures. In this thesis a method called "CHeater identification using Interim Person fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters in real-time during test administration. CHIPS utilizes response times (RTs) to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly intervention using a more secret item bank. Also, a slight modification is proposed to overcome situations with constant speed, called Modified-CHIPS (M-CHIPS). A simulation study assesses CHIPS, highlighting its effectiveness in identifying and controlling cheaters. However, it reveals limitations when cheaters possess all correct answers. The M-CHIPS overcame this limitation. Furthermore, the method has shown not to be influenced by the cheaters’ ability distribution or the level of correlation between ability and speed of test-takers. Finally, the method has demonstrated flexibility for the choice of significance level and the transition from fixed-length tests to variable-length ones. The thesis discusses potential applications, including the suitability of the method for multiple-choice tests, assumptions about RT distribution and level of item pre-knowledge. Also limitations are discussed to explore future developments such as different RT distributions, unusual honest respondent behaviors, and field testing in real-world scenarios. In summary, CHIPS and M-CHIPS offer real-time cheating detection in CAT, enhancing test security and ability estimation while not penalizing test respondents.
Resumo:
Bioelectronic interfaces have significantly advanced in recent years, offering potential treatments for vision impairments, spinal cord injuries, and neurodegenerative diseases. However, the classical neurocentric vision drives the technological development toward neurons. Emerging evidence highlights the critical role of glial cells in the nervous system. Among them, astrocytes significantly influence neuronal networks throughout life and are implicated in several neuropathological states. Although they are incapable to fire action potentials, astrocytes communicate through diverse calcium (Ca2+) signalling pathways, crucial for cognitive functions and brain blood flow regulation. Current bioelectronic devices are primarily designed to interface neurons and are unsuitable for studying astrocytes. Graphene, with its unique electrical, mechanical and biocompatibility properties, has emerged as a promising neural interface material. However, its use as electrode interface to modulate astrocyte functionality remains unexplored. The aim of this PhD work was to exploit Graphene-oxide (GO) and reduced GO (rGO)-coated electrodes to control Ca2+ signalling in astrocytes by electrical stimulation. We discovered that distinct Ca2+dynamics in astrocytes can be evoked, in vitro and in brain slices, depending on the conductive/insulating properties of rGO/GO electrodes. Stimulation by rGO electrodes induces intracellular Ca2+ response with sharp peaks of oscillations (“P-type”), exclusively due to Ca2+ release from intracellular stores. Conversely, astrocytes stimulated by GO electrodes show slower and sustained Ca2+ response (“S-type”), largely mediated by external Ca2+ influx through specific ion channels. Astrocytes respond faster than neurons and activate distinct G-Protein Coupled Receptor intracellular signalling pathways. We propose a resistive/insulating model, hypothesizing that the different conductivity of the substrate influences the electric field at the cell/electrolyte or cell/material interfaces, favouring, respectively, the Ca2+ release from intracellular stores or the extracellular Ca2+ influx. This research provides a simple tool to selectively control distinct Ca2+ signals in brain astrocytes in neuroscience and bioelectronic medicine.
Resumo:
Fiber-reinforced concrete is a composite material consisting of discrete, discontinuous, and uniformly distributed fibers in plain concrete primarily used to enhance the tensile properties of the concrete. FRC performance depends upon the fiber, interface, and matrix properties. The use of fiber-reinforced concrete has been increasing substantially in the past few years in different fields of the construction industry such as ground-level application in sidewalks and building floors, tunnel lining, aircraft parking, runways, slope stabilization, etc. Many experiments have been performed to observe the short-term and long-term mechanical behavior of fiber-reinforced concrete in the last decade and numerous numerical models have been formulated to accurately capture the response of fiber-reinforced concrete. The main purpose of this dissertation is to numerically calibrate the short-term response of the concrete and fiber parameters in mesoscale for the three-point bending test and cube compression test in the MARS framework which is based on the lattice discrete particle model (LDPM) and later validate the same parameters for the round panels. LDPM is the most validated theory in mesoscale theories for concrete. Different seeds representing the different orientations of concrete and fiber particles are simulated to produce the mean numerical response. The result of numerical simulation shows that the lattice discrete particle model for fiber-reinforced concrete can capture results of experimental tests on the behavior of fiber-reinforced concrete to a great extent.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.