878 resultados para Respiratory muscle strength, SNIP.
Resumo:
OBJECTIVES: Prospective evaluation of tracheo-carinal airway reconstructions using pedicled extrathoracic muscle flaps for closing airway defects after non-circumferential resections and after carinal resections as part of the reconstruction for alleviation of anastomotic tension. METHODS: From January 1996 to June 2006, 41 patients underwent tracheo-carinal airway reconstructions using 45 extrathoracic muscle flaps (latissimus dorsi, n=25; serratus anterior, n=18; pectoralis major, n=2) for closing airway defects resulting from (a) bronchopleural fistulas (BPF) with short desmoplastic bronchial stumps after right upper lobectomy (n=1) and right-sided (pleuro) pneumonectomy (n=13); (b) right (n=9) and left (n=3) associated with partial carinal resections for pre-treated centrally localised tumours; (c) partial non-circumferential tracheal resections for pre-treated tracheal tumours, tracheo-oesophageal fistulas (TEF) and chronic tracheal injury with tracheomalacia (n=11); (d) carinal resections with the integration of a muscle patch in specific parts of the anastomotic reconstruction for alleviation of anastomotic tension (n=4). The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. The patients were followed by clinical examination, repeated bronchoscopy, pulmonary function testing and CT scans. The minimum follow-up time was 6 months. RESULTS: Ninety-day mortality was 7.3% (3/41 patients). Four patients (9.7%) sustained muscle flap necrosis requiring re-operation and flap replacement without subsequent mortality, airway dehiscence or stenosis. Airway dehiscence was observed in 1/41 patients (2.4%) and airway stenosis in 1/38 surviving patients (2.6%) responding well to topical mitomycin application. Follow-up on clinical grounds, by CT scans and repeated bronchoscopy, revealed airtight, stable and epithelialised airways and no recurrence of BPF or TEF in all surviving patients. CONCLUSIONS: Tracheo-carinal airway defects can be closed by use of pedicled extrathoracic muscle flaps after non-circumferential resections and after carinal resections with the muscle patch as part of the reconstruction for alleviation of anastomotic tension.
Resumo:
PURPOSE: To examine the impact of spatial resolution and respiratory motion on the ability to accurately measure atherosclerotic plaque burden and to visually identify atherosclerotic plaque composition. MATERIALS AND METHODS: Numerical simulations of the Bloch equations and vessel wall phantom studies were performed for different spatial resolutions by incrementally increasing the field of view. In addition, respiratory motion was simulated based on a measured physiologic breathing pattern. RESULTS: While a spatial resolution of > or = 6 pixels across the wall does not result in significant errors, a resolution of < or = 4 pixels across the wall leads to an overestimation of > 20%. Using a double-inversion T2-weighted turbo spin echo sequence, a resolution of 1 pixel across equally thick tissue layers (fibrous cap, lipid, smooth muscle) and a respiratory motion correction precision (gating window) of three times the thickness of the tissue layer allow for characterization of the different coronary wall components. CONCLUSIONS: We found that measurements in low-resolution black blood images tend to overestimate vessel wall area and underestimate lumen area.
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.
Resumo:
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Resumo:
INTRODUCTION: We examined the power spectral changes of the compound muscle action potential (M wave) evoked during isometric contractions of increasing strength. METHODS: Surface electromyography (sEMG) of the vastus lateralis and medialis was recorded from 20 volunteers who performed 4-s step-wise isometric contractions of different intensities. A maximal M wave was elicited by a single stimulus to the femoral nerve and superimposed on the voluntary contractions. The spectral characteristics (Fmean and Fmedian) of sEMG and M-wave signals were calculated. RESULTS: M-wave spectral indicators increased systematically with contraction intensity up to 60% MVC and then leveled off at higher forces. Over the 10-60% MVC range, the increase in spectral indicators was 3 times higher for M waves (36%) than for sEMG (12%). CONCLUSIONS: The consistent increase in M-wave spectral characteristics with force is due to the fact that the number of motor units recruited by the superimposed supramaximal stimulus is approximately stable.
β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.
Resumo:
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Resumo:
Muscular function of the neck region may be of importance for the etiology of headache, especially of tension-type headache. However, very few data exist on the association of neck muscle function with different types of headache in adolescents. The main aim of the study was to examine the association of neck muscle function with adolescent headache. The associations between leisure time activities, endurance strength of the upper extremities (UE endurance) and mobility of the neck-shoulder region and adolescent headache were studied. In addition, the associations of force production, EMG/force ratio, co-activation and fatigue characteristics, and cross-sectional area (CSA) of neck muscles with adolescent headache were studied. The study is part of a population-based cohort study of 12-year-old children with and without headache. The study had five phases (years 1998-2003). At the age of 13 years, a sample of 183 adolescents (183/311) participated in endurance strength and mobility measurements of the neck-shoulder region. In addition, the type and level of physical and other leisure activity were elicited with open and structured questions. At the age of 17 years, a random sample of 89 adolescents (89/202) participated in force and EMG measurements of the neck-shoulder muscles. In addition, at the age of 17 years, a sample of 65 adolescents (65/89) participated in CSA measurements of the neck muscles. At the age of 13 years, intensive participation in overall sports activity was associated with migraine. Frequent computer use was associated both with migraine and tension-type headache. The type of sports or other leisure activity classified them on the basis of body loading was not associated with headache type. In girls, low UE endurance of both sides, and low cervical rotation of the dominant side, were associated with tension-type headache, and low UE endurance of non-dominant side with migraine. In boys, no associations occurred between UE endurance and mobility variables and headache types. At the age of 17 years, in girls, high EMG/force ratios between the EMG of the left agonist sternocleidomastoid muscle (SCM) and maximal neck flexion and neck rotation force to the right side as well as high co-activation of right antagonist cervical erector spinae (CES) muscles during maximal neck flexion force were associated with migraine-type headache. In girls, neck force production was not associated with headache types but low left shoulder flexion force was associated with tension-type headache. In boys, no associations were found between EMG and force variables and headache. Increased SCM muscles fatigue of both sides was associated with tension-type headache. In boys, the small CSA of the right SCM muscle and, in girls, of combined right SCM and scalenus muscles was associated with tension-type headache. Similarly, in boys, the large CSA of the right SCM muscle, of the combined right SCM and scalenus muscles, of the left semispinalis capitis muscle, of the combined left semispinalis and splenius muscles was associated with migraine. No other differences in the CSA of neck flexion or extension muscles were found. Differences in the neuromucular function of the neck-shoulder muscles were associated with adolescent headache, especially in girls. Differences in the cross-sectional area of unilateral neck muscles were associated with headache, especially in boys. Differences in the neuromuscular function and in the cross-sectional area of the neck muscles also occurred between different types of headache. It remains to be established whether the findings are primary or secondary to adolescent migraine and tension headache. Keywords: adolescent, cross-sectional area, electromyography, endurance strength, fatigue, force, headache, leisure time activity, migraine, mobility, neck muscles, tension-type headache
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
BACKGROUND: Fatigue is likely to be an important limiting factor in adolescents with spastic cerebral palsy (CP). AIMS: To determine the effects of walking-induced fatigue on postural control adjustments in adolescents with unilateral CP and their typically developing (TD) peers. METHODS: Ten adolescents with CP (14.2±1.7yr) and 10 age-, weight- and height-matched TD adolescents (14.1±1.9yr) walked for 15min on a treadmill at their preferred walking speed. Before and after this task, voluntary strength capacity of knee extensors (MVC) and postural control were evaluated in 3 conditions: eyes open (EO), eyes closed (EC) and with dual cognitive task (EODT). RESULTS: After walking, MVC decreased significantly in CP (-11%, P<0.05) but not in TD. The CoP area was only significantly increased in CP (90%, 34% and 60% for EO, EC and EODT conditions, respectively). The CoP length was significantly increased in the EO condition in CP and TD (20% and 21%) and was significantly increased in the EODT condition by 18% in CP only. CONCLUSIONS: Unlike TD adolescents, treadmill walking for 15min at their preferred speed lead to significant knee extensor strength losses and impairments in postural control in adolescents with unilateral spastic CP.
Resumo:
Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE) seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power) and structural (hypertrophy and phenotypic changes) adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric) have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals) limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.
Resumo:
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.