964 resultados para Residue of kaolin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) has antiretroviral activity associated with the hypermutation of viral DNA through cytosine deamination. APOBEC3G has two cytosine deaminase (CDA) domains; the catalytically inactive amino-terminal domain of APOBEC3G (N-CDA) carries the Vif interaction domain. There is no 3-D structure of APOBEC3G solved by X-ray or nuclear magnetic resonance. METHODOLOGY/PRINCIPAL FINDINGS: We predicted the structure of human APOBEC3G based on the crystal structure of APOBEC2. To assess the model structure, we evaluated 48 mutants of APOBEC3G N-CDA that identify novel variants altering DeltaVif HIV-1 infectivity and packaging of APOBEC3G. Results indicated that the key residue D128 is exposed at the surface of the model, with a negative local electrostatic potential. Mutation D128K changes the sign of that local potential. In addition, two novel functionally relevant residues that result in defective APOBEC3G encapsidation, R122 and W127, cluster at the surface. CONCLUSIONS/SIGNIFICANCE: The structure model identifies a cluster of residues important for packaging of APOBEC3G into virions, and may serve to guide functional analysis of APOBEC3G.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primitive lymphatic vessels are remodeled into functionally specialized initial and collecting lymphatics during development. Lymphatic endothelial cell (LEC) junctions in initial lymphatics transform from a zipper-like to a button-like pattern during collecting vessel development, but what regulates this process is largely unknown. Angiopoietin 2 (Ang2) deficiency leads to abnormal lymphatic vessels. Here we found that an ANG2-blocking antibody inhibited embryonic lymphangiogenesis, whereas endothelium-specific ANG2 overexpression induced lymphatic hyperplasia. ANG2 inhibition blocked VE-cadherin phosphorylation at tyrosine residue 685 and the concomitant formation of button-like junctions in initial lymphatics. The defective junctions were associated with impaired lymph uptake. In collecting lymphatics, adherens junctions were disrupted, and the vessels leaked upon ANG2 blockade or gene deletion. ANG2 inhibition also suppressed the onset of lymphatic valve formation and subsequent valve maturation. These data identify ANG2 as the first essential regulator of the functionally important interendothelial cell-cell junctions that form during lymphatic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.1 AbstractThe treatment of memory disorders and cognitive deficits in various forms of mental retardation may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. Different forms of memory have distinct molecular requirements.Short-term memory (STM) is thought to be mediated by covalent modifications of existing synaptic molecules, such as phosphorylation or dephosphorylation of enzymes, receptors or ion channels. In contrast, long-term memoiy (LTM) is thought to be mediated by growth of new synapses and restructuring of existing synapses. There is extensive evidence that changes in gene expression and de novo protein synthesis are key processes for LTM formation. In this context, the transcription factor CREB (cAMP-response element-binding protein) was shown to be crucial. Activation of CREB requires phosphorylation of a serine residue (Ser-133), and the subsequent recruitment of a coactivator called CREB-binding protein (CBP). Moreover, we have recently shown that another coactivator called CREB Regulated Transcription Coactivator 1 (CRTC1) functions as a calcium- and cAMP-sensitive coincidence detector in neurons, and is involved in hippocampal long-term synaptic plasticity. Given the importance of cAMP and calcium signaling for plasticity-related gene expression in neurons and in astrocytes, we sought to determine the respective involvement of the CREB coactivators CBP and CRTC1 in CREB-mediated transcription.We developed various strategies to selectively interfere with these CREB coactivators in mouse primary neurons and in astrocytes in vitro. However, despite several pieces of evidence implicating CBP and/or CRTC1 in the regulation of neuronal plasticity genes, we could not clearly determine the respective requirement of these coactivators for the activation of these genes. Nevertheless, we showed that calcineurin activity, which is important for CRTC1 nuclear translocation, is necessary for the expression of some CREB-regulated plasticity genes. We associated this phenomena to physiopathological conditions observed in Down's syndrome. In addition, we demonstrated that in astrocytes, noradrenaline stimulates CREB-target gene expression through β-adrenergic receptor activation, intracellular cAMP pathway activation, and CRTC-induced CREB transactivation.Defining the respective role of CREB and its coactivators CBP and CRTC1 in neuronal and astrocytic cultures in vitro sets the stage for future in vivo studies and for the possible development of new therapeutic strategies to improve the treatment of memoiy and cognitive disorders.1.2 RésuméUne meilleure connaissance des mécanismes moléculaires et cellulaires responsables de la formation de la mémoire pourrait grandement améliorer le traitement des troubles de la mémoire ainsi que des déficits cognitifs observés dans différentes formes de pathologies psychiatriques telles que le retard mental. Les différentes formes de mémoire dépendent de processus moléculaires différents.La mémoire à court terme (STM) semble prendre forme suite à des modifications covalentes de molécules synaptiques préexistantes, telles que la phosphorylation ou la déphosphorylation d'enzymes, de récepteurs ou de canaux ioniques. En revanche, la mémoire à long terme (LTM) semble être due à la génération de nouvelles synapses et à la restructuration des synapses existantes. De nombreuses études ont permis de démontrer que les changements dans l'expression des gènes et la synthèse de protéine de novo sont des processus clés pour la formation de la LTM. Dans ce contexte, le facteur de transcription CREB (cAMP-response element-binding protein) s'est avéré être un élément crucial. L'activation de CREB nécessite la phosphorylation d'un résidu sérine (Ser-133), et le recrutement d'un coactivateur nommé CBP (CREB binding protein). En outre, nous avons récemment démontré qu'un autre coactivateur de CREB nommé CRTC1 (CREB Regulated Transcription Coactivator 1) agit comme un détecteur de coïncidence de l'AMP cyclique (AMPc) et du calcium dans les neurones et qu'il est impliqué dans la formation de la plasticité synaptique à long terme dans l'hippocampe. Etant donné l'importance des voies de l'AMPc et du calcium dans l'expression des gènes impliqués dans la plasticité cérébrale, nous voulions déterminer le rôle respectif des coactivateurs de CREB, CBP et CRTC1.Nous avons développé diverses stratégies pour interférer de façon sélective avec les coactivateurs de CREB dans les neurones et dans les astrocytes chez la souris in vitro. Nos résultats indiquent que CBP et CRTC1 sont tous deux impliqués dans la transcription dépendante de CREB induite par l'AMPc et le calcium dans les neurones. Cependant, malgré plusieurs évidences impliquant CBP et/ou CRTC1 dans l'expression de gènes de plasticité neuronale, nous n'avons pas pu déterminer clairement leur nécessité respective pour l'activation de ces gènes. Toutefois, nous avons montré que l'activité de la calcineurine, dont dépend la translocation nucléaire de CRTC1, est nécessaire à l'expression de certains de ces gènes. Nous avons pu associer ce phénomène à une condition physiopathologique observée dans le syndrome de Down. Nous avons également montré que dans les astrocytes, la noradrénaline stimule l'expression de gènes cibles de CREB par une activation des récepteurs β- adrénergiques, l'activation de la voie de l'AMPc et la transactivation de CREB par les CRTCs.Définir le rôle respectif de CREB et de ses coactivateurs CBP et CRTC1 dans les neurones et dans les astrocytes in vitro permettra d'acquérir les connaissances nécessaires à de futures études in vivo et, à plus long terme d'éventuellement développer des stratégies thérapeutiques pour améliorer les traitements des troubles cognitifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the ENaC/degenerin family of ion channels include the epithelial sodium channel (ENaC), acid-sensing ion channels (ASICs) and the nematode Caenorhabditis elegans degenerins. These channels are activated by a variety of stimuli such as ligands (ASICs) and mechanical forces (degenerins), or otherwise are constitutively active (ENaC). Despite their functional heterogeneity, these channels might share common basic mechanisms for gating. Mutations of a conserved residue in the extracellular loop, namely the 'degenerin site' activate all members of the ENaC/degenerin family. Chemical modification of a cysteine introduced in the degenerin site of rat ENaC (betaS518C) by the sulfhydryl reagents MTSET or MTSEA, results in a approximately 3-fold increase in the open probability. This effect is due to an 8-fold shortening of channel closed times and an increase in the number of long openings. In contrast to the intracellular gating domain in the N-terminus which is critical for channel opening, the intact extracellular degenerin site is necessary for normal channel closing, as illustrated by our observation that modification of betaS518C destabilises the channel closed state. The modification by the sulfhydryl reagents is state- and size-dependent consistent with a conformational change of the degenerin site during channel opening and closing. We propose that the intracellular and extracellular modulatory sites act on a common channel gate and control the activity of ENaC at the cell surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopes of carbonates (delta(13)C(carb), delta(18)O(carb)), organic matter (delta(13)C(org), delta(15)N(org)) and major, trace and rare earth element (REE) compositions of marine carbonate rocks of Late Permian to Early Triassic age were used to establish the position of the Permian-Triassic boundary (PTB) at two continuous sections in the Velebit Mountain, Croatia. The chosen sections - Rizvanusa and Brezimenjaca - are composed of two lithostratigraphic units, the Upper Permian Transitional Dolomite and the overlying Sandy Dolomite. The contact between these units, characterized by the erosional features and sudden occurrence of ooids and siliciclastic grains, was previously considered as the chronostratigraphic PTB. The Sandy Dolomite is characterized by high content of non-carbonate material (up to similar to 30 wt.% insoluble residue), originated from erosion of the uplifted hinterland. A relatively rich assemblage of Permian fossils (including Geinitzina, Globivalvulina, Hemigordius, bioclasts of gastropods, ostracods and brachiopods) was found for the first time in Sandy Dolomite, 5 m above the lithologic boundary in the Rizvanusa section. A rather abrupt negative delta(13)C(carb) excursion in both sections appears in rocks showing no recognizable facies change within the Sandy Dolomite, -2 parts per thousand at Rizvanusa and -1.2 parts per thousand at Brezimenjaca, 11 m and 0.2 m above the lithologic contact, respectively. This level within the lower part of the Sandy Dolomite is proposed as the chemostratigraphic PTB. In the Rizvanusa section, the delta(13)C(org) values decline gradually from similar to-25 parts per thousand in the Upper Permian to similar to-29 parts per thousand in the Lower Triassic. The first negative delta(13)C(org) excursion occurs above the lithologic contact, within the uppermost Permian deposits, and appears to be related to the input of terrigenous material. The release of isotopically light microbial soil-biomass into the shallow-marine water may explain this sudden decrease of delta(13)C(org) values below the PTB. This would support the hypothesis that in the western Tethyan realm the land extinction, triggering a sudden drop of woody vegetation and related land erosion, preceded the marine extinction. The relatively low delta(15)N(org) values at the Permian-Triassic (P-Tr) transition level, close to approximate to 0 parts per thousand, and a secondary negative delta(13)C(org) excursion of -0.5 parts per thousand point to significant terrestrial input and primary contribution of cyanobacteria. The profiles of the concentrations of redox-sensitive elements (Ce, Mn, Fe, V), biogenic or biogenic-scavenged elements (P, Ba, Zn, V), Ce/Ce* values, and normalized trace elements, including Ba/Al, Ba/Fe, Ti/Al, Al/(Al + Fe + Mn) and Mn/Ti show clear excursions at the Transitional Dolomite-Sandy Dolomite lithologic boundary and the chemostratigraphic P-Tr boundary. The stratigraphic variations indicate a major regression phase marking the lithologic boundary, transgressive phases in the latest Permian and a gradual change into shallow/stagnant anoxic marine environment towards the P-Tr boundary level and during the earliest Triassic. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulation factor V (FV) deficiency is characterised by variable bleeding phenotypes and heterogeneous mutations. To add new insights into the FV genotype-phenotype relationship, we characterised the R1698W change in the A3 domain, at the poorly investigated interface with the A2 domain. The FV R1698W mutation was responsible for a markedly reduced expression level (10% of FV-WT) and specific activity in thrombin generation (0.39). Interestingly, the FVa1698W showed rapid activity decay upon activation due to increased dissociation rate between the heavy and light chains. The importance of the size and charge of the residue at position 1698 was investigated by three additional recombinant mutants, FVR1698A, FVR1698Q, and FVR1698E. FVR1698A and FVR1698Q expression (30 and 45% of FV-WT), specific activity (both 0.57) and stability were all reduced. Noticeably, FVR1698E showed normal activity and stability despite poor expression (10% of FV-WT). These data indicate the essential role of R1698 for normal biosynthetic process and support local flexibility for positively or negatively charged residues to produce stable and functional A3-A2 domain interactions. Their experimental alteration produces a gradient of FV defects, which help to interpret the wide spectrum of phenotypes in FV-deficient patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Along the chromosome of the obligate intracellular bacteria Protochlamydia amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila: lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed LGRs since encoded by "Large G+C-Rich" genes. RESULTS: No homologs to the whole protein sequence of LGRs were found in other organisms. Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains (LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic (28-meric) LRRs of LGRs present all a predicted alpha-helix conformation. Their closest homologs are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits Pfam domains related to DNA metabolism. CONCLUSION: Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins and Toll-like receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1), on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased with increasing lime-sludge rate. Soil leachate phosphate remained low (below the detection limit) in all treatments until 120 days, while the concentration increased in the lime-sludge treatments at 210 days (last sampling) in about 600 mg L-1. Lime-sludge decreased leachate Mg concentration, but had no significant effect among rates. Soil leachate Ca, K, B, Cu, Fe, and Zn did not change significantly for any lime-sludge application rates. The maximum NO3, Ca, Mg, K, and Na concentrations in the soil leachate occurred at 60 days after lime-sludge application (leaching equivalent to 1 pore volume), but for pH and SO4, the maximum occurred at 210 days (leaching equivalent to 4 pore volumes). Lime-sludge application decreased the concentration of exchangeable Al in the soil. Plant diameter growth and dry matter yield were increased with increasing lime-sludge rate. Beneficial effects on mineral nutrition (P, K, Ca, B, and Zn) of eucalypts were also obtained by the application of 4 and 6 t ha-1 of lime-sludge.