981 resultados para Reflective practices garment samples
Resumo:
The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.
Resumo:
Summary
Resumo:
Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.
Resumo:
Selostus: Lannoituksen ja kastelun vaikutus sipulin satoon, sadon valmistumiseen ja varastokestävyyteen
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
This paper deals with the recruitment strategies of employers in the low-skilled segment of the labour market. We focus on low-skilled workers because they are overrepresented among jobless people and constitute the bulk of the clientele included in various activation and labour market programmes. A better understanding of the constraints and opportunities of interventions in this labour market segment may help improve their quality and effectiveness. On the basis of qualitative interviews with 41 employers in six European countries, we find that the traditional signals known to be used as statistical discrimination devices (old age, immigrant status and unemployment) play a somewhat reduced role, since these profiles are overrepresented among applicants for low skill positions. However, we find that other signals, mostly considered to be indicators of motivation, have a bigger impact in the selection process. These tend to concern the channel through which the contact with a prospective candidate is made. Unsolicited applications and recommendations from already employed workers emit a positive signal, whereas the fact of being referred by the public employment office is associated with the likelihood of lower motivation.
Resumo:
Soil compaction is one of the main degradation causes, provoked by inappropriate agricultural practices that override the limitations of the soil physical properties. Preconsolidation pressure and penetration resistance have proved effective as alternative to assess and identify soil compaction. Based on the interpretation of these physico-mechanical parameters, compaction can be prevented with a better adjusted soil management. This study was performed to generate preconsolidation pressure and penetration resistance models for Latososlo Vermelho-Amarelo distrófico (Oxisol) under various managements and uses; and evaluate which of these would lead to degradation or degradation susceptibility. The study was carried out in Curvelo, MG. Two managements and one land use were evaluated: no-tillage, sheep grazing and natural forest. Undisturbed soil samples collected from the 0-5 cm layer were subjected to uniaxial compression and penetration resistance tests. Preconsolidation pressure models for forest and no-tillage soils were not statistically different, demonstrating a low degradation potential in no-tillage systems. Preconsolidation pressure was higher in soil under sheep grazing at all water retention tensions and penetration resistance values were higher than under native forest indicating animal trampling as a potential degradation factor. Neither management presented penetration resistance values above 2 MPa at field capacity moisture. Only under sheep grazing the soil penetrability was near 2 MPa at field capacity and values greater than 2 MPa at 0.2 kg kg-1.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
In evaluation of soil quality for agricultural use, soil structure is one of the most important properties, which is influenced not only by climate, biological activity, and management practices but also by mechanical and physico-chemical forces acting in the soil. The purpose of this study was to evaluate the influence of conventional agricultural management on the structure and microstructure of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) in an experimental area planted to maize. Soil morphology was described using the crop profile method by identifying the distinct structural volumes called Morphologically Homogeneous Units (MHUs). For comparison, we also described a profile in an adjacent area without agricultural use and under natural regrowth referred to as Memory. We took undisturbed samples from the main MHUs so as to form thin sections and blocks of soil for micromorphological and micromorphometrical analyses. Results from the application of the crop profile method showed the occurrence of the following structural types: loose (L), fragmented (F) and continuous (C) in both profiles analyzed. In the Memory soil profile, the fragmented structures were classified as Fptμ∆+tf and Fmt∆μ, whose micromorphology shows an enaulic-porphyric (porous) relative distribution with a great deal of biological activity as indicated by the presence of vughs and channels. Lower down, from 0.20 to 0.35 m, there was a continuous soil volume (sub-type C∆μ), with a subangular block microstructure and an enaulic-porphyric relative distribution, though in this case more compact and with aggregate coalescence and less biological activity. The micromorphometrical study of the soil of the Memory Plot showed the predominance of complex pores in NAM (15.03 %), Fmt∆μ (11.72 %), and Fptμ∆+tf (7.73 %), and rounded pores in C∆μ (8.21 %). In the soil under conventional agricultural management, we observed fragmented structures similar to the Memory Plot from 0.02 to 0.20 m, followed by a volume with a compact continuous structure (C∆μ), without visible porosity and with few roots. In the MHUs under conventional management, reduction in the packing pores (40 %) was observed, mainly in the continuous units (C). The microstructure had well-defined blocks, with the occurrence of planar pores and less evidence of biological activity. In conclusion, the morphological and micromorphological analyses of the soil profiles studied offered complementary information regarding soil structural quality, especially concerning the changes in pore types as result of mechanical stress undergone by the soil.
Resumo:
Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.
Resumo:
With the adoption of evidence-based practices as the standard by which offender interventions are evaluated for effectiveness in the Iowa Department of Corrections, the Victim Advisory Council deemed it critical to form an ad hoc committee to evaluate the Victim Impact Class (VIC)intervention used in institutions and community-based corrections across the state to determine its efficacy and adherence to that new standard.
Resumo:
Quantification of soil physical quality (SPQ) and pore size distribution (PSD) can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system), and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n). Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice) in relation to the continuous arable cropping system in regard to physical quality and structure.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.