899 resultados para Recycled Concrete Aggregate
Resumo:
The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.
Resumo:
A program of A (90 day moist room), B (14 day moist room) and C (7 day moist room and 7 day 50%_humidity) type curing for the R-11-Z program of durability of concrete using the automatic freeze and thaw machine (ASTM C-291) has been used in the Materials Department of the Iowa State Highway Commission since December 6, 1966. A summary of the results obtained from then until March 25, 1968, indicates that the B and C type curing are yielding very little valuable information. However, the A cure exhibits a wide range of durability factors and also groups the aggregates in an order which is related to the service record (there are definite exceptions. The biggest disadvantage to the A cure is the length of time that it takes to complete the test (90 day cure and 38 day test). The Kansas Highway Department has experimented with different cements and aggregates in order to determine which combination offers a concrete with the best durability factor possible. In an experimental test section of highway, concrete made with a Type II cement appeared to have better durability than others made with Type I cements. Because of this, a question has been raised at the Iowa State Highway Commission - Can concrete made with Type II cements, because of a lesser amount of tricalcium aluminate, yield better durability than concrete made with Type I cements?
Resumo:
Steel reinforcing bar (rebar) corrosion due to chlorine ingress is the primary degradation mechanism for bridge decks. In areas where rock salt is used as a de-icing agent, salt water seeps into the concrete through cracks, causing corrosion of the rebar and potentially leading to catastrophic failure if not repaired. This project explores the use of radio frequency identification (RFID) tags as low-cost corrosion sensors. RFID tags, when embedded in concrete, will fail due to corrosion in the same manner as rebar after prolonged exposure to salt water. In addition, the presence of salt water interferes with the ability to detect the tags, providing a secondary mechanism by which this method can work. During this project, a fieldable RFID equipment setup was constructed and tested. In addition to a number of laboratory experiments to validate the underlying principles, RFID tags were embedded and tested in several actual bridge decks. Two major challenges were addressed in this project: issues associated with tags not functioning due to being in close proximity to rebar and issues associated with portland concrete coming in direct contact with the tags causing a detuning effect and preventing the tags from operating properly. Both issues were investigated thoroughly. The first issue was determined to be a problem only if the tags are placed in close proximity to rebar. The second issue was resolved by encapsulating the tag. Two materials, polyurethane spray foam and extruded polystyrene, were identified as providing good performance after testing, both in the lab and in the field.
Resumo:
With ever tightening budgets and limitations of demolition equipment, states are looking for cost-effective, reliable, and sustainable methods for removing concrete decks from bridges. The goal of this research was to explore such methods. The research team conducted qualitative studies through a literature review, interviews, surveys, and workshops and performed small-scale trials and push-out tests (shear strength evaluations). Interviews with bridge owners and contractors indicated that concrete deck replacement was more economical than replacing an entire superstructure under the assumption that the salvaged superstructure has adequate remaining service life and capacity. Surveys and workshops provided insight into advantages and disadvantages of deck removal methods, information that was used to guide testing. Small-scale trials explored three promising deck removal methods: hydrodemolition, chemical splitting, and peeling
Resumo:
This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the effects of ternary mixtures on fresh and hardened mixture properties and on concrete sustainability; factors that need to be considered for both structural and mixture design; quality control issues; and three example mixtures from constructed projects
Resumo:
This literature review focuses on factors influencing drying shrinkage of concrete. Although the factors are normally interrelated, they can be categorized into three groups: paste quantity, paste quality, and other factors.
Resumo:
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the portable concrete barrier system. The focus of this research study was to develop a proper stiffness transition between W-beam guardrail and portable concrete barrier systems. This research effort was accomplished through development and refinement of design concepts using computer simulation with LS-DYNA. Several design concepts were simulated, and design metrics were used to evaluate and refine each concept. These concepts were then analyzed and ranked based on feasibility, likelihood of success, and ease of installation. The rankings were presented to the Technical Advisory Committee (TAC) for selection of a preferred design alternative. Next, a Critical Impact Point (CIP) study was conducted, while additional analyses were performed to determine the critical attachment location and a reduced installation length for the portable concrete barriers. Finally, an additional simulation effort was conducted in order to evaluate the safety performance of the transition system under reverse-direction impact scenarios as well as to select the CIP. Recommendations were also provided for conducting a Phase II study and evaluating the nested Midwest Guardrail System (MGS) configuration using three Test Level 3 (TL-3) full-scale crash tests according to the criteria provided in the Manual for Assessing Safety Hardware, as published by the American Association of Safety Highway and Transportation Officials (AASHTO).
Resumo:
The report summarizes the purchasing activity for soy based inks and recycled content trash bags for the Iowa DOT.
Resumo:
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Resumo:
Audit report of the financial statements of the governmental activities, the business type activities, the aggregate discretely presented component units, each major fund and the aggregate remaining fund information of the State of Iowa as of and for the year ended June 30, 2014
Resumo:
Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.
Resumo:
During the summer of 1963 the Materials Department noted the three to four ·year old concrete pavement on I-80 in Cass County was showing extensive surface cracking adjacent to joints and cracks. An examination of the pavement and a few cores from the cracked areas was made by the I.S.H.C. Materials Department and later by David Stark of the P.C.A. Additional surveys were conducted on other concrete pavement made with coarse aggregate from similar rock from two different sources. Blue-line cracking was found on some primary pavement and the indications of incipient cracks were seen on I-29 in Pottawattamie County, north of Council Bluffs. A good "D"-crack pattern is now evident. Surveys were then made of the entire Interstate concrete pavement. No other sections of Interstate were "D"-cracking, although some sections showed joint discoloration. None of these pavements, including the discolored sections, contained "D"-crack associated aggregates. At the same time as the Interstate survey additional pavements and sources were checked. Some "D"-cracking was noticed on certain sections of primary pavement 5-10 years old, in the vicinity of Waterloo and Cedar Rapids. The "D"-cracked pavement was from three aggregate sources, the Newton, Otis, and Burton Ave. quarries. Other pavements in this area that were older or from· different· coarse aggregate sources were not "D"-cracked. We believe that all the "D"-cracking is related, although dedolomitization is probably involved in the intermediate dolomite rocks.
Resumo:
Due to the low workability of slipform concrete mixtures, the science of rheology is not strictly applicable for such concrete. However, the concept of rheological behavior may still be considered useful. A novel workability test method (Vibrating Kelly Ball or VKelly test) that would quantitatively assess the responsiveness of a dry concrete mixture to vibration, as is desired of a mixture suitable for slipform paving, was developed and evaluated. The objectives of this test method are for it to be cost-effective, portable, and repeatable while reporting the suitability of a mixture for use in slipform paving. The work to evaluate and refine the test was conducted in three phases: 1. Assess whether the VKelly test can signal variations in laboratory mixtures with a range of materials and proportions 2. Run the VKelly test in the field at a number of construction sites 3. Validate the VKelly test results using the Box Test developed at Oklahoma State University for slipform paving concrete The data collected to date indicate that the VKelly test appears to be suitable for assessing a mixture’s response to vibration (workability) with a low multiple operator variability. A unique parameter, VKelly Index, is introduced and defined that seems to indicate that a mixture is suitable for slipform paving when it falls in the range of 0.8 to 1.2 in./√s.
Resumo:
To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.