894 resultados para Rectangular protocol in field
Resumo:
In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.
Resumo:
We report on an inter-comparison of six different hygroscopicity tandem differential mobility analysers (HTDMAs). These HTDMAs are used worldwide in laboratories and in field campaigns to measure the water uptake of aerosol particles and were never intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instrument and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.
Resumo:
Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.
Resumo:
Purpose: To investigate the impact of glaucomatous visual impairment on postural sway and falls among older adults.Methods: The sample comprised 72 community-dwelling older adults with open-angle glaucoma, aged 74.0 5.8 years (range 62 to 90 years). Measures of visual function included binocular visual acuity (high-contrast), binocular contrast sensitivity (Pelli- Robson) and binocular visual fields (merged monocular HFA 24-2 SITA-Std). Postural stability was assessed under four conditions: eyes open and closed, on a firm and on a foam surface. Falls were monitored for six months with prospective falls diaries. Regression models, adjusting for age and gender, examined the association between vision measures and postural stability (linear regression) and the number of falls (negative binomial regression). Results: Greater visual field loss was significantly associated with poorer postural stability with eyes open, both on firm (r = 0.34, p < 0.01) and foam (r = 0.45, p < 0.001) surfaces. Eighteen (25 per cent) participants experienced at least one fall: 12 (17 per cent) participants fell only once and six (eight per cent) participants fell two or more times (up to five falls). Visual field loss was significantly associated with falling; the rate of falls doubled for every 10 dB reduction in field sensitivity (rate ratio = 1.08, 95% CI = 1.02–1.13). Importantly, in a model comprising upper and lower field sensitivity, only lower field loss was significantly associated with the number of falls (rate ratio = 1.17, 95% CI = 1.04–1.33). Conclusions: Binocular visual field loss was significantly associated with postural instability and falls among older adults with glaucoma. These findings provide valuable directions for developing falls risk assessment and falls prevention strategies for this population.
Resumo:
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly as the level of background noise is increased. Speech enhancement is a popular method for making ASR systems more ro- bust. Single-channel spectral subtraction was originally designed to improve hu- man speech intelligibility and many attempts have been made to optimise this algorithm in terms of signal-based metrics such as maximised Signal-to-Noise Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en- hancement performance for intelligibility not speech recognition, therefore mak- ing them sub-optimal ASR applications. This research investigates two methods for closely coupling subtractive-type enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in- troducing phase spectrum information to enable spectral subtraction in the com- plex frequency domain. Likelihood-maximisation uses gradient-descent to optimise parameters of the enhancement algorithm to best fit the acoustic speech model given a word se- quence known a priori. Whilst this technique is shown to improve the ASR word accuracy performance, it is also identified to be particularly sensitive to non-noise mismatches between the training and testing data. Phase information has long been ignored in spectral subtraction as it is deemed to have little effect on human intelligibility. In this work it is shown that phase information is important in obtaining highly accurate estimates of clean speech magnitudes which are typically used in ASR feature extraction. Phase Estimation via Delay Projection is proposed based on the stationarity of sinusoidal signals, and demonstrates the potential to produce improvements in ASR word accuracy in a wide range of SNR. Throughout the dissertation, consideration is given to practical implemen- tation in vehicular environments which resulted in two novel contributions – a LIMA framework which takes advantage of the grounding procedure common to speech dialogue systems, and a resource-saving formulation of frequency-domain spectral subtraction for realisation in field-programmable gate array hardware. The techniques proposed in this dissertation were evaluated using the Aus- tralian English In-Car Speech Corpus which was collected as part of this work. This database is the first of its kind within Australia and captures real in-car speech of 50 native Australian speakers in seven driving conditions common to Australian environments.
Resumo:
Since 1993 we have been working on the automation of dragline excavators, the largest earthmoving machines that exist. Recently we completed a large-scale experimental program where the automation system was used for production purposes over a two week period and moved over 200,000 tonnes of overburden. This is a landmark achievement in the history of automated excavation. In this paper we briefly describe the robotic system and how it works cooperatively with the machine operator. We then describe our methodology for gauging machine performance, analyze results from the production trial and comment on the effectiveness of the system that we have created. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper "fullness" are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented. © 2006 Wiley Periodicals, Inc.
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper “fullness” are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Proper application of sunscreen is essential as an effective public health strategy for skin cancer prevention. Insufficient application is common among sunbathers, results in decreased sun protection and may therefore lead to increased UV damage of the skin. However, no objective measure of sunscreen application thickness (SAT) is currently available for field-based use. We present a method to detect SAT on human skin for determining the amount of sunscreen applied and thus enabling comparisons to manufacturer recommendations. Using a skin swabbing method and subsequent spectrophotometric analysis, we were able to determine SAT on human skin. A swabbing method was used to derive SAT on skin (in mg sunscreen per cm2 of skin area) through the concentration–absorption relationship of sunscreen determined in laboratory experiments. Analysis differentiated SATs between 0.25 and 4 mg cm−2 and showed a small but significant decrease in concentration over time postapplication. A field study was performed, in which the heterogeneity of sunscreen application could be investigated. The proposed method is a low cost, noninvasive method for the determination of SAT on skin and it can be used as a valid tool in field- and population-based studies.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
We present an approach to automating computationally sound proofs of key exchange protocols based on public-key encryption. We show that satisfying the property called occultness in the Dolev-Yao model guarantees the security of a related key exchange protocol in a simple computational model. Security in this simpler model has been shown to imply security in a Bellare {Rogaway-like model. Furthermore, the occultness in the Dolev-Yao model can be searched automatically by a mechanisable procedure. Thus automated proofs for key exchange protocols in the computational model can be achieved. We illustrate the method using the well-known Lowe-Needham-Schroeder protocol.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Client puzzles are meant to act as a defense against denial of service (DoS) attacks by requiring a client to solve some moderately hard problem before being granted access to a resource. However, recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et al., 2009) do not ensure that solving n puzzles is n times harder than solving one puzzle. Motivated by examples of puzzles where this is the case, we present stronger definitions of difficulty for client puzzles that are meaningful in the context of adversaries with more computational power than required to solve a single puzzle. A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles are not used in a secure manner. We describe a security model for analyzing the DoS resistance of any protocol in the context of client puzzles and give a generic technique for combining any protocol with a strong client puzzle to obtain a DoS-resistant protocol.
Resumo:
We present an automated verification method for security of Diffie–Hellman–based key exchange protocols. The method includes a Hoare-style logic and syntactic checking. The method is applied to protocols in a simplified version of the Bellare–Rogaway–Pointcheval model (2000). The security of the protocol in the complete model can be established automatically by a modular proof technique of Kudla and Paterson (2005).