947 resultados para Rayleigh-Benard Convection
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
An approximate procedure for studying harmonic soil-structure interaction problems is presented. The presence of Rayleigh waves is considered and the resulting governing equations of the dynamic soil-structure system are solved in the time domain. With this method the transient and steady states of a vibratory motion and also the nonlinear behaviour of the soil can be studied. As an example, the dynamic earth pressure against a rigid retaining wall is investigated. The loads are assumed to be harmonic Rayleigh waves with both static and dynamic surface surcharges. The dependence of the results on the excitation frequency is shown.
Resumo:
We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.
Resumo:
An experimental study is described of convection driven by thermal buoyancy in the annular gap between two corotating coaxial cylinders, heated from the outside and cooled from the inside. Steady convection patterns of the hexaroll and of the knot type are observed in the case of high Prandtl number fluids, for which the Coriolis force is sufficiently small. Oblique rolls and phase turbulence in the form of irregular patterns of convection can also be observed in wide regions of the parameter space.
Resumo:
A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.
Resumo:
Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.
Resumo:
"ORNL-1370."
Resumo:
Mode of access: Internet.
Resumo:
"ONR Contract No. Nonr-1055(00)."
Resumo:
Mode of access: Internet.
Resumo:
"Contract AT(30-1)-2789."
Resumo:
Work performed at CANEL.
Resumo:
"Report title: Theoretical investigations of the transition from bubble boiling to film boiling at forced convection"--p. v.
Resumo:
Mode of access: Internet.