997 resultados para Rat fetus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although numerous positron emission tomography (PET) studies with (18) F-fluoro-deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG-PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague-Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax /CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC-independent CMRglc . The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG-PET data available from translational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcoholic liver disease is mediated via activation of TLR4 signaling; MyD88-dependent and -independent signals are important contributors to injury in mouse models. Adiponectin, an anti-inflammatory adipokine, suppresses TLR4/MyD88-dependent responses via induction of heme oxygenase-1 (HO-1). Here we investigated the interactions between chronic ethanol, adiponectin, and HO-1 in regulation of TLR4/MyD88-independent signaling in macrophages and an in vivo mouse model. After chronic ethanol feeding, LPS-stimulated expression of IFN-β and CXCL10 mRNA was increased in primary cultures of Kupffer cells compared with pair-fed control mice. Treatment of Kupffer cells with globular adiponectin (gAcrp) normalized this response. LPS-stimulated IFN-β/CXCL10 mRNA and CXCL10 protein was also reduced in RAW 264.7 macrophages treated with gAcrp or full-length adiponectin. gAcrp and full-length adiponectin acted via adiponectin receptors 1 and 2, respectively. gAcrp decreased TLR4 expression in both Kupffer cells and RAW 264.7 macrophages. Small interfering RNA knockdown of HO-1 or inhibition of HO-1 activity with zinc protoporphyrin blocked these effects of gAcrp. C57BL/6 mice were exposed to chronic ethanol feeding, with or without treatment with cobalt protoporphyrin, to induce HO-1. After chronic ethanol feeding, mice were sensitized to in vivo challenge with LPS, expressing increased IFN-β/CXCL10 mRNA and CXCL10 protein in liver compared with control mice. Pretreatment with cobalt protoporphyrin 24 h before LPS challenge normalized this effect of ethanol. Adiponectin and induction of HO-1 potently suppressed TLR4-dependent/MyD88-independent cytokine expression in primary Kupffer cells from rats and in mouse liver after chronic ethanol exposure. These data suggest that induction of HO-1 may be a useful therapeutic strategy in alcoholic liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential pathogenicity of selected (potentially) probiotic and clinical isolates of Lactobacillus rhamnosus and Lactobacillus paracasei was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID(90)) of the L. rhamnosus endocarditis isolates varied between 10(6) and 10(7) c.f.u., whereas four of the six (potentially) probiotic L. rhamnosus isolates showed an ID(90) that was at least 10-fold higher (10(8) c.f.u.) (P<0.001). In contrast, the two other probiotic L. rhamnosus isolates exhibited an ID(90) (10(6) and 10(7) c.f.u.) comparable to the ID(90) of the clinical isolates of this species investigated (P>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID(90) (10(6) c.f.u.). L. paracasei tended to have a lower infectivity than L. rhamnosus (ID(90) of 10(7) to > or =10(8) c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (P>0.05). Except for one L. paracasei strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between L. rhamnosus endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bright-field wholemount labeling techniques applied to the mammalian central nervous system (CNS) offer advantages over conventional methods based on sections since an immediate and three-dimensional view of the stained components is provided. It thereby becomes possible to survey and count large number of cells and fibers in their natural relationships. The ability of confocal laser scanning microscopy to visualize in one focal plane the fluorescence associated with multiple markers could be most valuable by the availability of reliable wholemount fluorescent techniques. Accordingly, based in our previously published bright-field wholemount protocols [Brain Res. Prot. 2 (1998) 165-173], we have devised an effective immmunofluorescence wholemount procedure. We show that reliable wholemount fluorescent staining can be obtained using isolated complete CNS aged up to rat embryonic day 17, with antibodies penetration in the millimeter range. Examples are shown of preparations in which colocalization can be observed in nerve cells of cytoskeletal and calcium-binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence that glucagon-like peptide-1 (GLP-1) (7-36) amide functions as a novel neuropeptide prompted us to study the gene expression of its receptor in rat brain. Northern blot analysis showed transcripts of similar size in RINm5F cells, hypothalamus, and brain-stem. First-strand cDNA was prepared by using RNA from hypothalamus, brainstem, and R1Nm5F cells and subsequently amplified by PCR. Southern blot analysis of the PCR products showed a major 1.4-kb band in all these preparations. PCR products amplified from hypothalamus were cloned, and the nucleotide sequence of one strand was identical to that described in rat pancreatic islets. In situ hybridization studies showed specific labeling in both neurons and glia of the thalamus, hypothalamus, hippocampus, primary olfactory cortex, choroid plexus, and pituitary gland. In the hypothalamus, ventromedial nuclei cells were highly labeled. These findings indicate that GLP-1 receptors are actually synthesized in rat brain. In addition, the colocalization of GLP-1 receptors, glucokinase, and GLUT-2 in the same areas supports the idea that these cells play an important role in glucose sensing in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid and fatty acid composition of rat brain was studied during its development both in vivo and in an aggregating cell culture system. Although the amount of lipid present in the cultures was very low, the increase in glycolipid content corresponded closely to the period of intense myelin formation. Very long chain fatty acids (hydroxylated and unsubstituted) were present in 41-day cultures. In comparison to the in vivo situation, myelination was delayed in vitro and, after 40 days in culture, cholesterol esters were 5-fold higher than in vivo, indicating that demyelination was occurring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of progesterone (P4) on fructose rich diet (FRD) intake-induced metabolic, endocrine and parametrial adipose tissue (PMAT) dysfunctions was studied in the adult female rat. Sixty day-old rats were i.m. treated with oil alone (control, CT) or containing P4 (12 mg/kg). Rats ate Purina chow-diet ad libitum throughout the entire experiment and, between 100 and 120 days of age drank ad libitum tap water alone (normal diet; CT-ND and P4-ND) or containing fructose (10% w/v; CT-FRD and P4-FRD). At age 120 days, animals were subjected to a glucose tolerance test or decapitated. Plasma concentrations of various biomarkers and PMAT gene abundance were monitored. P4-ND (vs. CT-ND) rats showed elevated circulating levels of lipids. CT-FRD rats displayed high (vs. CT-ND) plasma concentrations of lipids, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1). Lipidemia and adiponectinemia were high (vs. P4-ND) in P4-FRD rats. Although P4 failed to prevent FRD-induced hyperleptinemia, it was fully protective on FRD-enhanced plasma PAI-1 levels. PMAT leptin and adiponectin mRNAs were high in CT-FRD and P4-FRD rats. While FRD enhanced PMAT PAI-1 mRNA abundance in CT rats, this effect was absent in P4 rats. Our study supports that a preceding P4-enriched milieu prevented the enhanced prothrombotic risk induced by FRD-elicited high PAI-1 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 μM for 1 h led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.