899 resultados para Radionuclide Tomography
Resumo:
Retinal laser photocoagulation is an established and successful treatment for a variety of retinal diseases. While being a valuable treatment modality, laser photocoagulation shows the drawback of employing high energy lasers which are capable of physically destroying the neural retina. For reliable therapy, it is therefore crucial to closely monitor the therapy effects caused in the retinal tissue. A depth resolved representation of optical tissue properties as provided by optical coherence tomography may provide valuable information about the treatment effects in the retinal layers if recorded simultaneously to laser coagulation. Therefore, in this work, the use of ultra-high resolution optical coherence tomography to represent tissue changes caused by conventional and selective retinal photocoagulation is investigated. Laser lesions were placed on porcine retina ex-vivo using a 577 nm laser as well as a pulsed laser at 527 nm built for selective treatment of the retinal pigment epithelium. Applied energies were varied to generate lesions best representing the span from under- to overtreatment. The lesions were examined using a custom-designed optical coherence tomography system with an axial resolution of 1.78 μm and 70 kHz Ascan rate. Optical coherence tomography scans included volume scans before and after irradiation, as well as time lapse scans (Mscan) of the lesions. Results show OCT lesion visibility thresholds to be below the thresholds of ophthalmoscopic inspection. With the ultra-high resolution OCT, 42% - 44% of ophthalmoscopically invisible lesions could be detected and lesions that were under- or overexposed could be distinguished using the OCT data.
Resumo:
BACKGROUND Detecting prostate cancer before spreading or predicting a favorable therapy are challenging issues for impacting patient's survival. Presently, 2-[(18) F]-fluoro-2-deoxy-D-glucose ((18) F-FDG) and/or (18) F-fluorocholine ((18) F-FCH) are the generally used PET-tracers in oncology yet do not emphasize the T877A androgen receptor (AR) mutation being exclusively present in cancerous tissue and escaping androgen deprivation treatment. METHODS We designed and synthesized fluorinated 5α-dihydrotestosterone (DHT) derivatives to target T877A-AR. We performed binding assays to select suitable candidates using COS-7 cells transfected with wild-type or T877A AR (WT-AR, T877A-AR) expressing plasmids and investigated cellular uptake of candidate (18) F-RB390. Stability, biodistribution analyses and PET-Imaging were assessed by injecting (18) F-RB390 (10MBq), with and without co-injection of an excess of unlabeled DHT in C4-2 and PC-3 tumor bearing male SCID mice (n = 12). RESULTS RB390 presented a higher relative binding affinity (RBA) (28.1%, IC50 = 32 nM) for T877A-AR than for WT-AR (1.7%, IC50 = 357 nM) related to DHT (RBA = 100%). A small fraction of (18) F-RB390 was metabolized when incubated with murine liver homogenate or human blood for 3 hr. The metabolite of RB390, 3-hydroxysteroid RB448, presented similar binding characteristics as RB390. (18) F-RB390 but not (18) F-FDG or (18) F-FCH accumulated 2.5× more in COS-7 cells transfected with pSG5AR-T877A than with control plasmid. Accumulation was reduced with an excess of DHT. PET/CT imaging and biodistribution studies revealed a significantly higher uptake of (18) F-RB390 in T877A mutation positive xenografts compared to PC-3 control tumors. This effect was blunted with DHT. CONCLUSION Given the differential binding capacity and the favorable radioactivity pattern, (18) F-RB390 represents the portrayal of the first imaging ligand with predictive potential for mutant T877A-AR in prostate cancer for guiding therapy. Prostate 75:348-359, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
Preclinical and clinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In 4 consecutive patients with advanced neuroendocrine tumors, we evaluated whether treatment with (177)Lu-labeled sst antagonists is feasible. METHODS After injection of approximately 1 GBq of (177)Lu-DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2] ((177)Lu-DOTA-JR11) and (177)Lu-DOTATATE, 3-dimensional voxel dosimetry analysis based on SPECT/CT was performed. A higher tumor-to-organ dose ratio for (177)Lu-DOTA-JR11 than for (177)Lu-DOTATATE was the prerequisite for treatment with (177)Lu-DOTA-JR11. RESULTS Reversible minor adverse effects of (177)Lu-DOTA-JR11 were observed. (177)Lu-DOTA-JR11 showed a 1.7-10.6 times higher tumor dose than (177)Lu-DOTATATE. At the same time, the tumor-to-kidney and tumor-to-bone marrow dose ratio was 1.1-7.2 times higher. All 4 patients were treated with (177)Lu-DOTA-JR11, resulting in partial remission in 2 patients, stable disease in 1 patient, and mixed response in the other patient. CONCLUSION Treatment of neuroendocrine tumors with radiolabeled sst antagonists is clinically feasible and may have a significant impact on peptide receptor radionuclide therapy.
Resumo:
UNLABELLED Ex vivo studies have shown that the gastrin releasing peptide receptor (GRPr) is overexpressed on almost all primary prostate cancers, making it a promising target for prostate cancer imaging and targeted radiotherapy. METHODS Biodistribution, dosimetry and tumor uptake of the GRPr antagonist ⁶⁴Cu-CB-TE2A-AR06 [(⁶⁴Cu-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane)-PEG₄-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-LeuNH₂] were studied by PET/CT in four patients with newly diagnosed prostate cancer (T1c-T2b, Gleason 6-7). RESULTS No adverse events were observed after injection of ⁶⁴Cu-CB-TE2A-AR06. Three of four tumors were visualized with high contrast [tumor-to-prostate ratio > 4 at 4 hours (h) post injection (p.i.)], one small tumor (T1c, < 5% tumor on biopsy specimens) showed moderate contrast (tumor-to-prostate ratio at 4 h: 1.9). Radioactivity was cleared by the kidneys and only the pancreas demonstrated significant accumulation of radioactivity, which rapidly decreased over time. CONCLUSION ⁶⁴Cu-CB-TE2A-AR06 shows very favorable characteristics for imaging prostate cancer. Future studies evaluating ⁶⁴Cu-CB-TE2A-AR06 PET/CT for prostate cancer detection, staging, active surveillance, and radiation treatment planning are necessary.
Resumo:
Forensic radiology is a new subspecialty that has arisen worldwide in the field of forensic medicine. Postmortem computed tomography (PMCT) and, to a lesser extent, PMCT angiography (PMCTA), are established imaging methods that have replaced dated conventional X-ray images in morgues. However, these methods have not been standardized for postmortem imaging. Therefore, this article outlines the main approach for a recommended standard protocol for postmortem cross-sectional imaging that focuses on unenhanced PMCT and PMCTA. This review should facilitate the implementation of a high-quality protocol that enables standardized reporting in morgues, associated hospitals or private practices that perform forensic scans to provide the same quality that clinical scans provide in court.
Resumo:
BACKGROUND The accuracy of CT pulmonary angiography (CTPA) in detecting or excluding pulmonary embolism has not yet been assessed in patients with high body weight (BW). METHODS This retrospective study involved CTPAs of 114 patients weighing 75-99 kg and those of 123 consecutive patients weighing 100-150 kg. Three independent blinded radiologists analyzed all examinations in randomized order. Readers' data on pulmonary emboli were compared with a composite reference standard, comprising clinical probability, reference CTPA result, additional imaging when performed and 90-day follow-up. Results in both BW groups and in two body mass index (BMI) groups (BMI <30 kg/m(2) and BMI ≥ 30 kg/m(2), i.e., non-obese and obese patients) were compared. RESULTS The prevalence of pulmonary embolism was not significantly different in the BW groups (P=1.0). The reference CTPA result was positive in 23 of 114 patients in the 75-99 kg group and in 25 of 123 patients in the ≥ 100 kg group, respectively (odds ratio, 0.991; 95% confidence interval, 0.501 to 1.957; P=1.0). No pulmonary embolism-related death or venous thromboembolism occurred during follow-up. The mean accuracy of three readers was 91.5% in the 75-99 kg group and 89.9% in the ≥ 100 kg group (odds ratio, 1.207; 95% confidence interval, 0.451 to 3.255; P=0.495), and 89.9% in non-obese patients and 91.2% in obese patients (odds ratio, 0.853; 95% confidence interval, 0.317 to 2.319; P=0.816). CONCLUSION The diagnostic accuracy of CTPA in patients weighing 75-99 kg or 100-150 kg proved not to be significantly different.
Resumo:
BACKGROUND A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. PURPOSE To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. MATERIAL AND METHODS Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. RESULTS At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P < 0.0001) larger than those by LungCARE® system. The VME% was 42.2% with a limit of agreement between -53.9% and 138.4%.The volume measurement with soft filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P < 0.05). LMS measured greater volumes with both filters, 13.6% for soft and 3.8% for hard filters, respectively (P < 0.01 and P > 0.05). CONCLUSION There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.
Resumo:
BACKGROUND Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. RESULTS An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CONCLUSION CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.
Resumo:
OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.
Resumo:
This document describes the guideline for peptide receptor radionuclide therapy (PRRT) published by the German Society of Nuclear Medicine (DGN) and accepted by the Association of the Scientific Medical Societies in Germany (AWMF) to be included in the official AWMF Guideline Registry. These recommendations are a prerequisite for the quality management in the treatment of patients with somatostatin receptor expressing tumours using PRRT. They are aimed at guiding nuclear medicine specialists in selecting likely candidates to receive PRRT and to deliver the treatment in a safe and effective manner. The recommendations are based on an interdisciplinary consensus. The document contains background information and definitions and covers the rationale, indications and contraindications for PRRT. Essential topics are the requirements for institutions performing the therapy, e. g. presence of an expert for medical physics, intense cooperation with all colleagues involved in the treatment of a patient, and a certificate of instruction in radiochemical labelling and quality control are required. Furthermore, it is specified which patient data have to be available prior to performance of therapy and how treatment has to be carried out technically. Here, quality control and documentation of labelling are of great importance. After treatment, clinical quality control is mandatory (work-up of therapy data and follow-up of patients). Essential elements of follow-up are specified in detail. The complete treatment inclusive after-care has to be realised in close cooperation with the involved medical disciplines. Generally, the decision for PRRT should be undertaken within the framework of a multi-disciplinary tumour board.
Resumo:
We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.
Resumo:
Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.