950 resultados para RECEPTOR DA NEUROCININA B
Resumo:
As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.
Resumo:
The correct diagnosis of renal allograft rejection may be difficult using only clinical and/or histopathological criteria. Immunological assays should be considered in order to evaluate the phenotype of inflammatory infiltrate in renal allograft biopsies. Immunohistochemical studies were performed to detect mononuclear cells, CD4 and CD8 T lymphocytes, B lymphocytes, macrophages, null cells, and positive cells for interleukin-2 receptors. A total of 41 allograft biopsies classified into three groups were studied: acute cellular rejection (28 biopsies/22 patients), borderline (7 biopsies/5 patients) and control (6 biopsies/6 patients). In the rejection group (RG), increased cellularity was found mainly at the tubulo-interstitial level. Expression of CD8 positive cells was higher in RG when compared to borderline (BG) and control (CG) groups, respectively (0.9 vs. 0.0 vs. 0.35 cells/mm2; p < 0.001). Expression of macrophages was not statistically significant among the three groups (RG = 0.6 vs. BG = 0.2 vs. CG = 0.0 cells/mm2; p < 0.02). In the BG, CD4 + cells predominated (BG = 0.2 vs. RG = 0.05 vs. CG = 0.0 cells/mm2; p < 0.05). Clinically these patients were treated as cases of acute rejection. The numbers and different types of infiltrating cells did not correlate with patient's clinical outcome. Copyright © Informa Healthcare.
Resumo:
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.
Resumo:
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor κB ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers' expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
Background: Cardiovascular disease is the leading cause of death in Brazil, and hypertension is its major risk factor. The benefit of its drug treatment to prevent major cardiovascular events was consistently demonstrated. Angiotensin-receptor blockers (ARB) have been the preferential drugs in the management of hypertension worldwide, despite the absence of any consistent evidence of advantage over older agents, and the concern that they may be associated with lower renal protection and risk for cancer. Diuretics are as efficacious as other agents, are well tolerated, have longer duration of action and low cost, but have been scarcely compared with ARBs. A study comparing diuretic and ARB is therefore warranted.Methods/design: This is a randomized, double-blind, clinical trial, comparing the association of chlorthalidone and amiloride with losartan as first drug option in patients aged 30 to 70 years, with stage I hypertension. The primary outcomes will be variation of blood pressure by time, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new subclinical atherosclerosis and sudden death. The study will last 18 months. The sample size will be of 1200 participants for group in order to confer enough power to test for all primary outcomes. The project was approved by the Ethics committee of each participating institution.Discussion: The putative pleiotropic effects of ARB agents, particularly renal protection, have been disputed, and they have been scarcely compared with diuretics in large clinical trials, despite that they have been at least as efficacious as newer agents in managing hypertension. Even if the null hypothesis is not rejected, the information will be useful for health care policy to treat hypertension in Brazil. Clinical trials registration number: ClinicalTrials.gov: NCT00971165. © 2011 Fuchs et al; licensee BioMed Central Ltd.
Resumo:
Infertility represents one of the main long-term consequences of combination chemotherapy used for the treatment of breast cancer. Approximately 60%-65% of breast cancers express the nuclear hormone receptor in premenopausal women. Adjuvant endocrine therapy is an integral component of care for patients with hormone receptor-positive (HR+) tumours. The GnRH agonist (GnRHa) alone or in combination with tamoxifen produces results at least similar to those obtained with the different chemotherapy protocols in patients with HR+ tumors with respect to recurrence-free survival and overall survival, Presentation of the hypothesis: It is time to indicate adjuvant therapy with GnRHa associated with tamoxifen for patients with breast cancer (HR+ tumours) if they want to preserve their reproductive function. Testing the hypothesis: Assessment of ovarian reserve tests: follicle stimulating hormone (FSH), anti-Mullerian hormone (AMH), inhibin B, antral follicle count (AFC) and ovarian volume 6 months, and 1 year after the end of therapy with GnRHa/tamoxifen. The recurrence-free survival and overall survival should be analysed. Implications of the hypothesis: The major implication will be to avoid adjuvant chemotherapy for patients with breast cancer (HR+ tumours) that request fertility preservation. It is expected that ovarian function should not be altered in almost all cases. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
Resumo:
Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.
Resumo:
Pharmacological manipulation of TRPV1 (Transient Receptor Potential Vanilloid type-1) receptors has been emerging as a novel target in the investigation of anxiety states. Here, we attempt to show the role played by the TRPV1 receptors within the dorsal periaqueductal gray matter (dPAG), a midbrain structure strongly involved in the modulation of anxiety. Anxiety was assessed by recording spatiotemporal [percent open arm entries (%OE) and percent open arm time (%OT)] and ethological [e.g., head dipping (HD), stretched-attend postures (SAP)] measures in mice exposed to the elevated plus-maze (EPM). Mice received an intra-dPAG injection of the TRPV1 agonist capsaicin (0, 0.01, 0.1 or 1.0. nmol/0.2. μL; Experiment 1) or antagonist capsazepine (0, 10, 30 or 60. nmol/0.2. μL; Experiment 2), or combined injections of capsazepine (30. nmol) and capsaicin (1.0. nmol) (Experiment 3), and were exposed to the EPM to record spatiotemporal and ethological measures. While capsaicin produced an anxiogenic-like effect (it reduced %OE and %OT and frequency of SAP and HD in the open arms), capsazepine did not change any behavior in the EPM. However, when injected before capsaicin (1.0. nmol), intra-dPAG capsazepine (30. nmol-a dose devoid of intrinsic effects) antagonized completely the anxiogenic-like effect of the TRPV1 agonist. These results suggest that the anxiogenic-like effect produced by capsaicin is primarily due to TRPV1 activation within the dPAG in mice, but that dPAG TRPV1 receptors do not exert a tonic control over defensive behavior in mice exposed to the EPM. © 2013 Elsevier B.V.
Resumo:
The association of genetic polymorphism in the estrogen receptor alpha (ERα) gene and risk for diseases including breast cancer (BC) has been the subject of great interest. Objective: Checking on women with high breast density after menopause, the frequency of the Pvull and Xbal polymorphisms of the ERα gene and the correlation between them and the known risk factors for breast cancer. Method: Observational study with 308 women between 45 and 65 years old with high breast density, without hormonal therapy, menstruation for a year or more, breast and ovarian cancer history. It was characterized in clinical history and physical examination: menarche, menopause, parity, family history of BC, smoking, alcohol intake and body mass index. Results: The allelic and genotypic frequencies for ERα-Pvull and Xbal: p=43.99%; p=56.01%; pp=32.14%; Pp=47.73% and PP=20.13%; X=41.56%; x=58.44%; xx=33.44%; Xx=50.00% and XX=16.56%, respectively. The most frequent risk factors for BC: menarche before 12 years old (35.38%), nulliparity or first child after 28 years old (41.66%), family history of BC (19.16%) and overweight/obesity (62.01%). Conclusion: Allelic and genotypic distribution similar to literature. The risk factors for BC were more prevalent in women with high breast density but without significant associations with these polymorphisms. © 2013 Informa UK Ltd. All rights reserved.
Resumo:
Systemic administration of cannabidiol (CBD) is able to attenuate cardiovascular responses to acute restraint stress through activation of 5-HT1A receptors. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) is involved in the antiaversive effects of the CBD. Moreover, it has been proposed that synapses within the BNST influence restraint-evoked cardiovascular changes, in particular by an inhibitory influence on the tachycardiac response associated to restraint stress. Thus, the present work investigated the effects of CBD injected into the BNST on cardiovascular changes induced by acute restraint stress and if these effects would involve the local activation of 5-HT1A receptors. The exposition to restraint stress increased both blood pressure and heart rate (HR). The microinjection of CBD (30 and 60nmol) into the BNST enhanced the restraint-evoked HR increase, in a dose-dependent manner, without affecting the pressor response. The selective 5-HT1A receptor antagonist WAY100635 by itself did not change the cardiovascular responses to restraint stress, but blocked the effects of CBD. These results showed that CBD microinjected into the BNST enhanced the HR increase associated with acute restraint stress without affecting the blood pressure response. Although these results are not in agreement with those observed after systemic administration of CBD, they are similar to effects observed after reversible inactivation of the BNST. Moreover, similar to the effects observed after systemic administration, CBD effects in the BNST seem to depend on activation of 5-HT1A receptors. © 2012 Elsevier B.V. and ECNP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)