905 resultados para Quantum computational complexity
Resumo:
The literature abounds with descriptions of failures in high-profile projects and a range of initiatives has been generated to enhance project management practice (e.g., Morris, 2006). Estimating from our own research, there are scores of other project failures that are unrecorded. Many of these failures can be explained using existing project management theory; poor risk management, inaccurate estimating, cultures of optimism dominating decision making, stakeholder mismanagement, inadequate timeframes, and so on. Nevertheless, in spite of extensive discussion and analysis of failures and attention to the presumed causes of failure, projects continue to fail in unexpected ways. In the 1990s, three U.S. state departments of motor vehicles (DMV) cancelled major projects due to time and cost overruns and inability to meet project goals (IT-Cortex, 2010). The California DMV failed to revitalize their drivers’ license and registration application process after spending $45 million. The Oregon DMV cancelled their five year, $50 million project to automate their manual, paper-based operation after three years when the estimates grew to $123 million; its duration stretched to eight years or more and the prototype was a complete failure. In 1997, the Washington state DMV cancelled their license application mitigation project because it would have been too big and obsolete by the time it was estimated to be finished. There are countless similar examples of projects that have been abandoned or that have not delivered the requirements.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.
Resumo:
We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.
Resumo:
In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.
Resumo:
Computational journalism involves the application of software and technologies to the activities of journalism, and it draws from the fields of computer science, the social sciences, and media and communications. New technologies may enhance the traditional aims of journalism, or may initiate greater interaction between journalists and information and communication technology (ICT) specialists. The enhanced use of computing in news production is related in particular to three factors: larger government data sets becoming more widely available; the increasingly sophisticated and ubiquitous nature of software; and the developing digital economy. Drawing upon international examples, this paper argues that computational journalism techniques may provide new foundations for original investigative journalism and increase the scope for new forms of interaction with readers. Computer journalism provides a major opportunity to enhance the delivery of original investigative journalism, and to attract and retain readers online.
Resumo:
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
Resumo:
This study aimed to explore resilience and wellbeing among a group of eight refugee women originating from several countries (mainly African) and living in Brisbane, most of whom were single mothers. To challenge mostly quantitative and gender-blind explorations of mental health concepts among refugee groups, the project sought an emic and contextual understanding of resilience and wellbeing. Established perspectives, while useful, tend to overlook the complexities of refugee mental health experiences and can neglect the dense nature of individual stories. The purpose of my study was to contest relatively simplistic narratives of mental health constructs that tend to dominate migrant and refugee studies and influence practice paradigms in the human services field. In this ethnographic exploration of mental health constructs conducted in 2008 and 2009, the use of in-depth interviews, participant observations, and visual ethnographic elements provided an opportunity for refugee women to tell their own stories. The participants’ unique narratives of pre- and post-migration experiences, shaped by specific gender, age, social, cultural and political aspects prevailing in their lives, yielded ‘thick’ ethnographic description (Geertz, 1973) of their social worlds. The findings explored in this study, namely language issues, the impact of community dynamics, and the single status of refugee women, clearly demonstrate that mental health constructs are fluid, multifaceted and complex in reality. In fact, language, community dynamics, and being a single mother, represented both opportunities and barriers in the lives of participants. In some contexts, these factors were conducive to resilience and wellbeing, while in other circumstances, these three elements acted as a hindrance to positive mental health outcomes. There are multiple dimensions to the findings, signifying that the social worlds of refugee women cannot be simplified using set definitions and neat notions of resilience and wellbeing. Instead, the intricacies and complexities embedded in the mundane of the everyday highlight novel conceptualisations of resilience and wellbeing. Based on the particular circumstances of single refugee mothers, whose experiences differ from that of married women, this thesis presents novel articulations of mental health constructs, as an alternative view to existing trends in the literature on refugee issues. Rich and multi-dimensional meanings associated with the socio-cultural determinants of mental health emerged in the process. This thesis’ findings highlight a significant gap in diasporic studies as well as simplistic assumptions about refugee women’s resettlement experiences. Single refugee women’s distinct issues are so complex and dense, that a contextual approach is critical to yield accurate depictions of their circumstances. It is therefore essential to understand refugee lived experiences within broader socio-political contexts to truly appreciate the depth of these narratives. In this manner, critical aspects salient to refugee journeys can inform different understandings of resilience, wellbeing and mental health, and shape contemporary policy and human service practice paradigms.
Resumo:
Quantum dot - plasmon waveguide systems are of interest for the active control of plasmon propagation, and consequently, the development of active nanophotonic devices such as nano-sized optical transistors. This paper is concerned with how varying aspect ratio of the waveguide crosssection affects the quantum dot - plasmon coupling. We compare a stripe waveguide with an equivalent nanowire, illustrating that both waveguides have a similar coupling strength to a nearby quantum dot for small waveguide cross-section, thereby indicating that stripe lithographic waveguides have strong potential use in quantum dot –plasmon waveguide systems. We also demonstrate that changing the aspect ratio of both stripe and wire waveguides can increase the spontaneous emission rate of the quantum dot into the plasmon mode, by up to a factor of five. The results of this paper will contribute to the optimisation of quantum dot - plasmon waveguide systems and help pave the way for the development of active nanophotonics devices.
Resumo:
Abstract—Computational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.