895 resultados para Pulsed Dielectrick Barrier Discharge
Resumo:
Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the mab natalizumab is an effective treatment of multiple sclerosis (MS). Which of the two α4 heterodimers is involved in disease pathogenesis has, however, remained controversial. Whereas the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, is ameliorated in β7-integrin-deficient C57BL/6 mice, neutralizing antibodies against the β7-integrin subunit or the α4β7-integrin heterodimer fail to interfere with EAE pathogenesis in the SJL mouse. To facilitate α4β7-integrin-mediated immune-cell trafficking across the blood-brain barrier (BBB), we established transgenic C57BL/6 mice with endothelial cell-specific, inducible expression of the α4β7-integrin ligand mucosal addressin cell adhesion molecule (MAdCAM)-1 using the tetracycline (TET)-OFF system. Although TET-regulated MAdCAM-1 induced α4β7-integrin mediated interaction of α4β7(+) /α4β1(-) T cells with the BBB in vitro and in vivo, it failed to influence EAE pathogenesis in C57BL/6 mice. TET-regulated MAdCAM-1 on the BBB neither changed the localization of central nervous system (CNS) perivascular inflammatory cuffs nor did it enhance the percentage of α4β7-integrin(+) inflammatory cells within the CNS during EAE. In conclusion, our study demonstrates that ectopic expression of MAdCAM-1 at the BBB does not increase α4β7-integrin-mediated immune cell trafficking into the CNS during MOG(aa35-55)-induced EAE.
Resumo:
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Resumo:
We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Bragger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cydohexane gives improved vibration rotation interaction constants for the v(32), v(6), v(16), and v(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane
Resumo:
We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.
Resumo:
Bioresorbable collagen membranes are routinely utilized in guided bone regeneration to selectively direct the growth and repopulation of bone cells in areas of insufficient volume. However, the exact nature by which alveolar osteoblasts react to barrier membranes as well as the effects following the addition of growth factors to the membranes are still poorly understood. The objective of the present study was therefore to investigate the effect of a bioresorbable collagen membrane soak-loaded in growth factors bone morphogenetic protein 2 (BMP2) or transforming growth factor β1 (TGFβ1) on osteoblast adhesion, proliferation, and differentiation.
Resumo:
Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.
Resumo:
During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.