955 resultados para Published fields
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
Evidence for scattering closed orbits for the Rydberg electron of the singly excited helium atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength has been found through a quantum calculation of the photo-excitation spectrum. A particular 3D scattering orbit in a mixed regular and chaotic region has been investigated and the hydrogenic 3D closed orbits composing it identified. To the best of our knowledge, this letter reports the first quantum calculation of the scaled spectrum of a non- hydrogenic atom in crossed fields.
Resumo:
The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits, Excellent agreement has been found with all peaks assigned.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.
Resumo:
It is shown how the existing theory of the dynamic Kerr effect and nonlinear dielectric relaxation based on the noninertial Brownian rotation of noninteracting rigid dipolar particles may be generalized to take into account interparticle interactions using the Maier-Saupe mean field potential. The results (available in simple closed form) suggest that the frequency dependent nonlinear response provides a method of measuring the Kramers escape rate (or in the analogous problem of magnetic relaxation of fine single domain ferromagnetic particles, the superparamagnetic relaxation time).
Resumo:
We are searching for early-type stars towards the Galactic centre which are potentially young objects situated within the inner few kiloparsecs of the disk. Photographic photometry from the UK Schmidt Telescope has been used to identify the bluest candidates in nineteen Schmidt fields (centred close to the Galactic centre). We have previously obtained FLAIR low dispersion spectroscopy for three of these fields to estimate spectral types and here we present spectroscopy for an additional seven fields. Combining the results for all ten fields, 56 stars were initially classified as early-B type. Estimates of the equivalent widths of their Balmer and He I lines have been used to estimate atmospheric parameters and 32 targets have effective temperatures greater than or equal to 17 000 K (corresponding to a spectral type of B3 or earlier). The spectra of seven of these targets also have absorption lines due to O II and Si III and can be reliably classified as early- B type. Additionally 78 stars have estimated effective temperatures between 11 000 and 16 000 K with a further a further 50 objects identified as late-B (or early-A) type. All but two of the early B-type candidates have magnitudes in the range 12.0 less than or equal to V less than or equal to 16.0, and our best estimates of their distance suggest that they could be close to (i.e. R-g <3 kpc), or even beyond the Galactic centre.
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
Huge magnetic fields are predicted1–4 to exist in the high-density region of plasmas produced during intense laser–matter interaction, near the criticaldensity surface where most laser absorption occurs, but until now these fields have never been measured. By using pulses focused to extreme intensities to investigate laser–plasma interactions5, we have been able to record the highest magnetic fields ever produced in a laboratory – over 340 megagauss – by polarimetry measurements of self-generated laser harmonics.
Resumo:
We report an experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm(2) to 10 PW/cm(2) using effective intensity matching (EIM), which is coupled with intensity selective scanning (ISS) to recover the geometry-independent probability of ionization. Such measurements, made possible by quantifying diffraction effects in the laser focus, are compared directly to theoretical predictions of multiphoton, tunnel and field ionization, and a remarkable agreement demonstrated. EIM-ISS allows the straightforward quantification of the probability of recollision ionization in a linearly polarized laser pulse. Furthermore, the probability of ionization is discussed in terms of the Keldysh adiabaticity parameter gamma, and the influence of the precursor ionic states present in recollision ionization is observed.
Resumo:
A detailed investigation has been carried out of N-2 molecules in intense 55 and 220 fs, linear and circular polarized, 790 nm laser pulses. Using an intensity selective scanning technique, ionization, dissociation, and dissociative ionization channels have been studied. Remarkably similar enhancements of signal with linear polarization observed for double ionization and dissociation channels demonstrate the dominance of dynamic alignment over rescattering effects. Fragmentation energies from dissociative ionization are reasonably well reproduced by classical trajectory calculations, the higher charged fragments displaying evidence of post dissociative ionization.
Resumo:
In this paper we study the response in time of N2, O2, and F2 to laser pulses having a wavelength of 390 nm. We find single-ionization suppression in O2 and its absence in F2, in accordance with experimental results at lambda= 800 nm. Within our framework of time-dependent density functional theory we are able to explain deviations from the predictions of intense-field many-body S-matrix theory (IMST). We confirm the connection of ionization suppression with destructive interference of outgoing electron waves from the ionized electron orbital. However, the prediction of ionization suppression, justified within the IMST approach through the symmetry of the highest occupied molecular orbital (HOMO), is not reliable since it turns out that—e.g., in the case of F2—the electronic response to the laser pulse is rather complicated and does not lead to dominant depletion of the HOMO. Therefore, the symmetry of the HOMO is not sufficient to predict ionization suppression. However, at least for F2, the symmetry of the dominantly ionized orbital is consistent with the nonsuppression of ionization.
Resumo:
Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.
Resumo:
The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.
Resumo:
Background: Greater dietary intakes of n–3 long-chain polyunsaturated fatty acids (n–3 PUFAs) may be beneficial for depressed mood. Objective: This study aimed to systematically review all published randomized controlled trials investigating the effects of n–3 PUFAs on depressed mood. Design: Eight medical and health databases were searched over all years of records until June 2006 for trials that exposed participants to n–3 PUFAs or fish, measured depressed mood, were conducted on human participants, and included a comparison group. Results: Eighteen randomized controlled trials were identified; 12 were included in a meta-analysis. The pooled standardized difference in mean outcome (fixed-effects model) was 0.13 SDs (95% CI: 0.01, 0.25) in those receiving n–3 PUFAs compared with placebo, with strong evidence of heterogeneity (I2 = 79%, P <0.001). The presence of funnel plot asymmetry suggested that publication bias was the likely source of heterogeneity. Sensitivity analyses that excluded one large trial increased the effect size estimates but did not reduce heterogeneity. Metaregression provided some evidence that the effect was stronger in trials involving populations with major depression—the difference in the effect size estimates was 0.73 (95% CI: 0.05, 1.41; P = 0.04), but there was still considerable heterogeneity when trials that involved populations with major depression were pooled separately (I2 = 72%, P <0.001). Conclusions: Trial evidence that examines the effects of n–3 PUFAs on depressed mood is limited and is difficult to summarize and evaluate because of considerable heterogeneity. The evidence available provides little support for the use of n–3 PUFAs to improve depressed mood. Larger trials with adequate power to detect clinically important benefits are required.