953 resultados para Proton Affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphotyrosine-binding (PTB) domain is a recently identified protein module that has been characterized as binding to phosphopeptides containing an NPXpY motif (X = any amino acid). We describe here a novel peptide sequence recognized by the PTB domain from Drosophila Numb (dNumb), a protein involved in cell fate determination and asymmetric cell division during the development of the Drosophila nervous system. Using a Tyr-oriented peptide library to screen for ligands, the dNumb PTB domain was found to bind selectively to peptides containing a YIGPYφ motif (φ represents a hydrophobic residue). A synthetic peptide containing this sequence bound specifically to the isolated dNumb PTB domain in solution with a dissociation constant (Kd) of 5.78 ± 0.74 μM. Interestingly, the affinity of this peptide for the dNumb PTB domain was increased (Kd = 1.41 ± 0.10 μM) when the second tyrosine in the sequence was phosphorylated. Amino acid substitution studies of the phosphopeptide demonstrated that a core motif of sequence GP(p)Y is required for high-affinity binding to the dNumb PTB domain. Nuclear magnetic resonance experiments performed on isotopically labeled protein complexed with either Tyr- or pTyr-containing peptides suggest that the same set of amino acids in the dNumb PTB domain is involved in binding both phosphorylated and nonphosphorylated forms of the peptide. The in vitro selectivity of the dNumb PTB domain is therefore markedly different from those of the Shc and IRS-1 PTB domains, in that it interacts preferentially with a GP(p)Y motif, rather than NPXpY, and does not absolutely require ligand phosphorylation for binding. Our results suggest that the PTB domain is a versatile protein module, capable of exhibiting varied binding specificities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented here are femtosecond pump-probe studies on the water-solvated 7-azaindole dimer, a model DNA base pair. In particular, studies are presented that further elucidate the nature of the reactive and nonreactive dimers and also provide new insights establishing that the excited state double-proton transfer in the dimer occurs in a stepwise rather than a concerted manner. A major question addressed is whether the incorporation of a water molecule with the dimer results in the formation of species that are unable to undergo excited state double-proton transfer, as suggested by a recent study reported in the literature [Nakajima, A., Hirano, M., Hasumi, R., Kaya, K., Watanabe, H., Carter, C. C., Williamson, J. M. & Miller, T. (1997) J. Phys. Chem. 101, 392–398]. In contrast to this earlier work, our present findings reveal that both reactive and nonreactive dimers can coexist in the molecular beam under the same experimental conditions and definitively show that the clustering of water does not induce the formation of the nonreactive dimer. Rather, when present with a species already determined to be a nonreactive dimer, the addition of water can actually facilitate the occurrence of the proton transfer reaction. Furthermore, on attaining a critical hydration number, the data for the nonreactive dimer suggest a solvation-induced conformational structure change leading to proton transfer on the photoexcited half of the 7-azaindole dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of proton transfer from the bulk into the membrane protein interior was studied. The light-induced reduction of a bound ubiquinone molecule QB by the photosynthetic reaction center is accompanied by proton trapping. We used kinetic spectroscopy to measure (i) the electron transfer to QB (at 450 nm), (ii) the electrogenic proton delivery from the surface to the QB site (by electrochromic carotenoid response at 524 nm), and (iii) the disappearance of protons from the bulk solution (by pH indicators). The electron transfer to QB− and the proton-related electrogenesis proceeded with the same time constant of ≈100 μs (at pH 6.2), whereas the alkalinization in the bulk was distinctly delayed (τ ≈ 400 μs). We investigated the latter reaction as a function of the pH indicator concentration, the added pH buffers, and the temperature. The results led us to the following conclusions: (i) proton transfer from the surface-located acidic groups into the QB site followed the reduction of QB without measurable delay; (ii) the reprotonation of these surface groups by pH indicators and hydronium ions was impeded, supposedly, because of their slow diffusion in the surface water layer; and (iii) as a result, the protons were slowly donated by neutral water to refill the proton vacancies at the surface. It is conceivable that the same mechanism accounts for the delayed relaxation of the surface pH changes into the bulk observed previously with bacteriorhodopsin membranes and thylakoids. Concerning the coupling between proton pumps in bioenergetic membranes, our results imply a tendency for the transient confinement of protons at the membrane surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used two monovalent phage display libraries containing variants of the Zif268 DNA-binding domain to obtain families of zinc fingers that bind to alterations in the last 4 bp of the DNA sequence of the Zif268 consensus operator, GCG TGGGCG. Affinity selection was performed by altering the Zif268 operator three base pairs at a time, and simultaneously selecting for sets of 16 related DNA sequences. In this way, only four experiments were required to select for all possible 64 combinations of DNA triplet sequences. The results show that (i) for high-affinity DNA binding in the range observed for the Zif268 wild-type complex (Kd = 0.5–5 nM), finger 1 specifically requires the arginine at the carboxy terminus of its recognition helix that forms a bidentate hydrogen-bond with the guanine base (G) in the crystal structure of Zif268 complexed to its DNA operator sequence GCG TGG GCG; (ii) when the guanine base (G) is replaced by A, C, or T, a lower-affinity family (Kd ⩾ 50 nM) can be detected that shows an overall tendency to bind G-rich DNA; (iii) the residues at position 2 on the finger 2 recognition helix do not appear to interact strongly with the complementary 5′ base in the finger 1 binding site; and (iv) unexpected substitutions at the amino terminus of finger 1 can occasionally result in specificity for the 3′ base in the finger 1 binding site. A DNA recognition directory was constructed for high-affinity zinc fingers that recognize all three bases in a DNA triplet for seven sequences of the type GNN. Similar approaches may be applied to other zinc fingers to broaden the scope of the directory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome display was applied for affinity selection of antibody single-chain fragments (scFv) from a diverse library generated from mice immunized with a variant peptide of the transcription factor GCN4 dimerization domain. After three rounds of ribosome display, positive scFvs were isolated and characterized. Several different scFvs were selected, but those in the largest group were closely related to each other and differed in 0 to 5 amino acid residues with respect to their consensus sequence, the likely common progenitor. The best scFv had a dissociation constant of (4 ± 1) × 10−11 M, measured in solution. One amino acid residue in complementarity determining region L1 was found to be responsible for a 65-fold higher affinity than the likely progenitor. It appears that this high-affinity scFv was selected from the mutations occurring during ribosome display in vitro, and that this constitutes an affinity maturation inherent in this method. The in vitro-selected scFvs could be functionally expressed in the Escherichia coli periplasm with good yields or prepared by in vitro refolding. Thus, ribosome display can be a powerful methodology for in vitro library screening and simultaneous sequence evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the relative free energies of hapten binding to the germ line and mature forms of the 48G7 antibody Fab fragments by applying a continuum model to structures sampled from molecular dynamics simulations in explicit solvent. Reasonable absolute and very good relative free energies were obtained. As a result of nine somatic mutations that do not contact the hapten, the affinity-matured antibody binds the hapten >104 tighter than the germ line antibody. Energetic analysis reveals that van der Waals interactions and nonpolar contributions to solvation are similar and drive the formations of both the germ line and mature antibody–hapten complexes. Affinity maturation of the 48G7 antibody therefore appears to occur through reorganization of the combining site geometry in a manner that optimizes the balance of gaining favorable electrostatic interactions with the hapten and losing those with solvent during the binding process. As reflected by lower rms fluctuations in the antibody–hapten complex, the mature complex undergoes more restricted fluctuations than the germ line complex. The dramatically increased affinity of the 48G7 antibody over its germ line precursor is thus made possible by electrostatic optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bacterial photosynthetic reaction centers, the protonation events associated with the different reduction states of the two quinone molecules constitute intrinsic probes of both the electrostatic interactions and the different kinetic events occurring within the protein in response to the light-generated introduction of a charge. The kinetics and stoichiometries of proton uptake on formation of the primary semiquinone QA− and the secondary acceptor QB− after the first and second flashes have been measured, at pH 7.5, in reaction centers from genetically modified strains and from the wild type. The modified strains are mutated at the L212Glu and/or at the L213Asp sites near QB; some of them carry additional mutations distant from the quinone sites (M231Arg → Leu, M43Asn → Asp, M5Asn → Asp) that compensate for the loss of L213Asp. Our data show that the mutations perturb the response of the protein system to the formation of a semiquinone, how distant compensatory mutations can restore the normal response, and the activity of a tyrosine residue (M247Ala → Tyr) in increasing and accelerating proton uptake. The data demonstrate a direct correlation between the kinetic events of proton uptake that are observed with the formation of either QA− or QB−, suggesting that the same residues respond to the generation of either semiquinone species. Therefore, the efficiency of transferring the first proton to QB is evident from examination of the pattern of H+/QA− proton uptake. This delocalized response of the protein complex to the introduction of a charge is coordinated by an interactive network that links the Q− species, polarizable residues, and numerous water molecules that are located in this region of the reaction center structure. This could be a general property of transmembrane redox proteins that couple electron transfer to proton uptake/release reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 μM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 μM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

σ32, the product of the rpoH gene in Escherichia coli, provides promoter specificity by interacting with core RNAP. Amino acid sequence alignment of σ32 with other sigma factors in the σ70 family has revealed regions of sequence homology. We have investigated the function of the most highly conserved region, 2.2, using purified products of various rpoH alleles. Core RNAP binding analysis by glycerol gradient sedimentation has revealed reduced core RNAP affinity for one of the mutant σ32 proteins, Q80R. This reduced core interaction is exacerbated in the presence of σ70, which competes with σ32 for binding of core RNAP. When a different but more conserved amino acid was introduced at this position by site-directed mutagenesis (Q80N), this mutant sigma factor still displayed a significant reduction in its core RNAP affinity. Based on these results, we conclude that at least one specific amino acid in region 2.2 is involved in core RNAP interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity binding was demonstrated between suppressor-T-cell-derived bioactive glycosylation-inhibiting factor (GIF) and helper T hybridomas and natural killer cell line cells. Inactive GIF present in cytosol of suppressor T cells and Escherichia coli-derived recombinant human GIF (rhGIF) failed to bind to these cells. However, affinity of rhGIF for the target cells was generated by replacement of Cys-57 in the sequence with Ala or of Asn-106 with Ser or binding of 5-thio-2-nitrobenzoic acid to Cys-60 in the molecule. Such mutations and the chemical modification of rhGIF synergistically increased the affinity of GIF molecules for the target cells. The results indicated that receptors on the target cells recognize conformational structures of bioactive GIF. Equilibrium dissociation constant (Kd) of the specific binding between bioactive rGIF derivatives and high-affinity receptors was 10–100 pM. Receptors for bioactive GIF derivatives were detected on Th1 and Th2 T helper clones and natural killer NK1.1+ cells in normal spleen but not on naive T or B cells. Neither the inactive rGIF nor bioactive rGIF derivatives bound to macrophage and monocyte lines or induced macrophages for tumor necrosis factor α production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the “peroxy” to “oxoferryl” transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s−1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s−1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA → heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3–CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an interpretation of the experimental findings of Klinman and coworkers [Cha, Y., Murray, C. J. & Klinman, J. P. (1989) Science 243, 1325–1330; Grant, K. L. & Klinman, J. P. (1989) Biochemistry 28, 6597–6605; and Bahnson, B. J. & Klinman, J. P. (1995) Methods Enzymol. 249, 373–397], who showed that proton transfer reactions that are catalyzed by bovine serum amine oxidase proceed through tunneling. We show that two different tunneling models are consistent with the experiments. In the first model, the proton tunnels from the ground state. The temperature dependence of the kinetic isotope effect is caused by a thermally excited substrate mode that modulates the barrier, as has been suggested by Borgis and Hynes [Borgis, D. & Hynes, J. T. (1991) J. Chem. Phys. 94, 3619–3628]. In the second model, there is both over-the-barrier transfer and tunneling from excited states. Finally, we propose two experiments that can distinguish between the possible mechanisms.