781 resultados para Process-dissociation Framework
A conceptual framework for supply chain collaboration:empirical evidence from the agri-food industry
Resumo:
Purpose - The purpose of this paper is to analyse the concept of supply chain collaboration and to provide an overall framework that can be used as a conceptual landmark for further empirical research. In addition, the concept is explored in the context of agri-food industry and particularities are identified. Finally, the paper submits empirical evidence from an exploratory case study in the agri-food industry, at the grower-processor interface, and information regarding the way the concept is actually applied in small medium-sized enterprises (SMEs) is presented. Design/methodology/approach - The paper employed case study research by conducting in-depth interviews in the two companies. Findings - Supply chain collaboration concept is of significant importance for the agri-food industry however, some constraints arise due to the nature of industry's products, and the specific structure of the sector. Subsequently, collaboration in the supply chain is often limited to operational issues and to logistics-related activities. Research limitations/implications - Research is limited to a single case study and further qualitative testing of the conceptual model is needed in order to adjust the model before large scale testing. Practical implications - Case study findings may be transferable to other similar dual relationships at the grower-processor interface. Weaker parts in asymmetric relationships have opportunities to improve their position, altering the dependence balance, by achieving product/process excellence. Originality/value - The paper provides evidence regarding the applicability of the supply chain collaboration concept in the agri-food industry. It takes into consideration not relationships between big multinational companies, but SMEs. © Emerald Group Publishing Limited.
Resumo:
Time, cost and quality are the prime objectives of any project. Unfortunately, today’s project management does not always ensure the realisation of these objectives. The main reasons of project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation, under-estimation and mis-estimation. An overall organisational approach with the application of appropriate management philosophies, tools and techniques can only solve the problem. The present study establishes a methodology for achieving success in implementing projects using a business process re-engineering (BPR) framework. Internal performance characteristics are introspected through condition diagnosis that identifies and prioritises areas of concern requiring attention. Process re-engineering emerges as a most critical area for immediate attention. Project process re-engineering is carried out by eliminating non-value added activities, taking up activities concurrently by applying information systems rigorously and applying risk management techniques throughout the project life cycle. The overall methodology is demonstrated through applications to cross country petroleum pipeline project organisation in an Indian scenario.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
Biodiesel is fast becoming one of the key transport fuels as the world endeavours to reduce its carbon footprint and find viable alternatives to oil derived fuels. Research in the field is currently focusing on more efficient ways to produce biodiesel, with the most promising avenue of research looking into the use of heterogeneous catalysis. This article presents a framework for kinetic reaction and diffusive transport modelling of the heterogeneously catalysed transesterification of triglycerides into fatty acid methyl esters (FAMEs), unveiled by a model system of tributyrin transesterification in the presence of MgO catalysts. In particular, the paper makes recommendations on multicomponent diffusion calculations such as the diffusion coefficients and molar fluxes from infinite dilution diffusion coefficients using the Wilke and Chang correlation, intrinsic reaction kinetic studies using the Eley-Rideal kinetic mechanism with methanol adsorption as the rate determining steps and multiscale reaction-diffusion process simulation between catalytic porous and bulk reactor scales. © 2013 The Royal Society of Chemistry.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.
Resumo:
Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet's noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively.©2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.
Resumo:
On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.
Resumo:
Although interests inhabit a central place in the multiple streams framework (MSF), interest groups have played only a minor role in theoretical and empirical studies until now. In Kingdon’s original conception, organized interests are a key variable in the politics stream. Revisiting Kingdon’s concept with a particular focus on interest groups and their activities—in different streams and at various levels—in the policy process, we take this argument further. In particular, we argue that specifying groups’ roles in other streams adds value to the explanatory power of the framework. To do this, we look at how interest groups affect problems, policies, and politics. The influence of interest groups within the streams is explained by linking the MSF with literature on interest intermediation. We show that depending on the number of conditions and their activity level, interest groups can be involved in all three streams. We illustrate this in case studies reviewing labor market policies in Germany and chemicals regulation at the European level.
Resumo:
Тодор П. Чолаков, Димитър Й. Биров - Тази статия представя цялостен модел за автоматизиран реинженеринг на наследени системи. Тя описва в детайли процесите на превод на софтуера и на рефакторинг и степента, до която могат да се автоматизират тези процеси. По отношение на превода на код се представя модел за автоматизирано превеждане на код, съдържащ указатели и работа с адресна аритметика. Също така се дефинира рамка за процеса на реинженеринг и се набелязват възможности за по-нататъшно развитие на концепции, инструменти и алгоритми.
Resumo:
The aim of this contribution is to critically evaluate one of the theoretical approaches used to study the European Union (EU) political system and interest groups activity: the advocacy coalition framework (ACF). ACF considers that the outcome of legislative procedures is influenced by the alignment and role played by advocacy coalitions. This contribution assesses the impact of ACF on our understanding of the influences on the EU policy processes, highlighting the strengths and weaknesses of the approach. The main argument is that the ACF, although very useful in studying the EU political system, shows shortcomings when applied to the study of EU interest groups' performance. The contribution ends with a consideration of future directions for theoretical and empirical ACF research, alone and as part of wider integrated theoretical approaches to understanding the dynamics of influence in the EU. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Reliability modelling and verification is indispensable in modern manufacturing, especially for product development risk reduction. Based on the discussion of the deficiencies of traditional reliability modelling methods for process reliability, a novel modelling method is presented herein that draws upon a knowledge network of process scenarios based on the analytic network process (ANP). An integration framework of manufacturing process reliability and product quality is presented together with a product development and reliability verification process. According to the roles of key characteristics (KCs) in manufacturing processes, KCs are organised into four clusters, that is, product KCs, material KCs, operation KCs and equipment KCs, which represent the process knowledge network of manufacturing processes. A mathematical model and algorithm is developed for calculating the reliability requirements of KCs with respect to different manufacturing process scenarios. A case study on valve-sleeve component manufacturing is provided as an application example of the new reliability modelling and verification procedure. This methodology is applied in the valve-sleeve component manufacturing processes to manage and deploy production resources.
Resumo:
Local Government Authorities (LGAs) are mainly characterised as information-intensive organisations. To satisfy their information requirements, effective information sharing within and among LGAs is necessary. Nevertheless, the dilemma of Inter-Organisational Information Sharing (IOIS) has been regarded as an inevitable issue for the public sector. Despite a decade of active research and practice, the field lacks a comprehensive framework to examine the factors influencing Electronic Information Sharing (EIS) among LGAs. The research presented in this paper contributes towards resolving this problem by developing a conceptual framework of factors influencing EIS in Government-to-Government (G2G) collaboration. By presenting this model, we attempt to clarify that EIS in LGAs is affected by a combination of environmental, organisational, business process, and technological factors and that it should not be scrutinised merely from a technical perspective. To validate the conceptual rationale, multiple case study based research strategy was selected. From an analysis of the empirical data from two case organisations, this paper exemplifies the importance (i.e. prioritisation) of these factors in influencing EIS by utilising the Analytical Hierarchy Process (AHP) technique. The intent herein is to offer LGA decision-makers with a systematic decision-making process in realising the importance (i.e. from most important to least important) of EIS influential factors. This systematic process will also assist LGA decision-makers in better interpreting EIS and its underlying problems. The research reported herein should be of interest to both academics and practitioners who are involved in IOIS, in general, and collaborative e-Government, in particular. © 2013 Elsevier Ltd. All rights reserved.