977 resultados para Problem Resolution
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We consider the Fekete-Szego problem with real parameter lambda for the class Co(alpha) of concave univalent functions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results: In the present analysis, starting from C alpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions: Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.
Resumo:
We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many applications involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy has been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more 'natural' motion of the hyper-redundant robot, with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators nearer the base 'see' a greater inertia due to the links farther away, smaller motion of the actuators nearer the base results in better motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.
Resumo:
An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
The structure of bovine prothrombin fragment 1 has been refined at 2.25 Å resolution using high resolution measurements made with the synchrotron beam at CHESS. The synchrotron data were collected photographically by oscillation methods (R-merge = 0.08). These were combined with lower order diffractometer data for refinement purposes. The structure was refined using restrained least-squares methods with the program PROLSQ to a crystallographic R-value of 0.175. The structure includes 105 water molecules with occupancies of >0·6. The first 35 residues (Ala1-Leu35) of the N-terminal ?-carboxy glutamic acid-domain (Ala1-Cys48) of fragment 1 are disordered as are two carbohydrate chains of Mr ? 5000; the latter two combine to render 40% of the structure disordered. The folding of the kringle of fragment 1 is related to the close intramolecular contact between the inner loop disulfide groups. Half of the conserved sequence of the kringle forms an inner core surrounding these disulfide groups. The remainder of the sequence conservation is associated with the many turns of the main chain. The Pro95 residue of the kringle has a cis conformation and Tyr74 is ordered in fragment 1, although nuclear magnetic resonance studies indicate that the comparable residue of plasminogen kringle 4 has two positions. Surface accessibility calculations indicate that none of the disulfide groups of fragment 1 is accessible to solvent.
Resumo:
Habitat distruction and hunting for dissection specimens have taken their toll. But there may be other, subtle factors causing loss of amphibian populations.
Resumo:
Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.
Resumo:
X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.