968 resultados para Pre-B cells
Resumo:
The production of immunoglobulin A (IgA) in mammals exceeds all other isotypes, and it is mostly exported across mucous membranes. The discovery of IgA and the realization that it dominates humoral mucosal immunity, in contrast to the IgG dominance of the systemic immune system, was early evidence for the distinct nature of mucosal immunology. It is now clear that IgA can function in high-affinity modes for neutralization of toxins and pathogenic microbes, and as a low-affinity system to contain the dense commensal microbiota within the intestinal lumen. The basic map of induction of IgA B cells in the Peyer's patches, which then circulate through the lymph and bloodstream to seed the mucosa with precursors of plasma cells that produce dimeric IgA for export through the intestinal epithelium, has been known for more than 30 years. In this review, we discuss the mechanisms underlying selective IgA induction of mucosal B cells for IgA production and the immune geography of their homing characteristics. We also review the functionality of secretory IgA directed against both commensal organisms and pathogens.
Resumo:
The posters presented at the 6th International Immunoglobulin Symposium covered a wide range of fields and included both basic science and clinical research. From the abstracts accepted for poster presentation, 12 abstracts were selected for oral presentations in three parallel sessions on immunodeficiencies, autoimmunity and basic research. The immunodeficiency presentations dealt with novel, rare class-switch recombination (CSR) deficiencies, attenuation of adverse events following IVIg treatment, association of immunoglobulin (Ig)G trough levels and protection against acute infection in patients with X-linked agammaglobulinaemia (XLA) and common variable immunodeficiency (CVID), and the reduction of class-switched memory B cells in patients with specific antibody deficiency (SAD). The impact of intravenous immunoglobulin on fetal alloimmune thrombocytopenia, pregnancy and postpartum-related relapses in multiple sclerosis and refractory myositis, as well as experiences with subcutaneous immunoglobulin in patients with multi-focal motor neuropathy, were the topics presented in the autoimmunity session. The interaction of dendritic cell (DC)-SIGN and alpha2,6-sialylated IgG Fc and its impact on human DCs, the enrichment of sialylated IgG in plasma-derived IgG, as wells as prion surveillance and monitoring of anti-measles titres in immunoglobulin products, were covered in the basic science session. In summary, the presentations illustrated the breadth of immunoglobulin therapy usage and highlighted the progress that is being made in diverse areas of basic and clinical research, extending our understanding of the mechanisms of immunoglobulin action and contributing to improved patient care.
Resumo:
Lymph nodes with Hodgkin disease (HD) harbor few neoplastic cells in a marked leukocytic infiltrate. Since chemokines are likely to be involved in the recruitment of these leukocytes, the expression of potentially relevant chemokines and chemokine receptors were studied in lymph nodes from 24 patients with HD and in 5 control lymph nodes. The expression of regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta was analyzed by in situ hybridization and that of CCR3 and CCR5 by immunohistochemistry and flow cytometry. It was found that, overall, the expression of all 4 chemokines was markedly enhanced, but the cellular source was different. RANTES was expressed almost exclusively by T cells whereas the expression of MCP-1, MIP-1alpha, and MIP-1beta was confined largely to macrophages. In control lymph nodes, chemokine expression was low, with the exception of MIP-1alpha in macrophages. CCR3 and CCR5 were highly expressed in T cells of HD involved but not of control lymph nodes. CCR3 was equally distributed in CD4+ and CD8+ cells, but CCR5 was associated largely with CD4+ cells. In HD lymph nodes, CCR3 and CCR5 were also expressed in B cells, which normally do not express these receptors. All these chemokines and receptors studied, by contrast, were absent in the neoplastic cells. It was concluded that chemokines are involved in the formation of the HD nonneoplastic leukocytic infiltrate. Expression of CCR3 and CCR5 appears to be characteristic of HD, but the roles of these receptors' up-regulation for the disease process remain unclear.
Resumo:
Immunoglobulin E (IgE) mediates the immune response to parasites, but can also cause allergies. In humans maternal IgE is not transferred to cord blood and high levels of cord blood IgE are associated with subsequent allergy. In horses, both maternal IgG and IgE are transferred via colostrum; the IgE levels in the mare's serum, the colostrum and the foal's serum are correlated but the consequences of IgE transfer to foals are not known. By about 6 weeks of age the levels of IgE in foal serum have dropped to a nadir, at 6 months of age the level of IgE has risen only very slightly and is no longer correlated with the levels seen at birth, IgE(+) B-cells could be detected in lymphoid follicles of some foals at this age. Surprisingly, the levels of total IgE detected in a foals serum at 6 months of age are significantly correlated with the level in its serum at 1, 2 and even 3 years of age suggesting that by 6 months of age the foals are synthesizing IgE and that a pattern of relatively higher or lower total serum IgE has been established. The neonatal intestinal mucosa contained connective tissue mast cells which stained for bound IgE in foals up to 9 weeks of age but not mucosal mast cells, thereafter, the intestinal mast cells were IgE negative until 6 months of age. IgE antibodies to Culicoides nubeculosus salivary antigens were detected in Swiss born foals from imported Icelandic mares allergic to Culicoides spp. yet the foals showed no signs of skin sensitization and such second generation foals are known not to have an increased risk of developing allergy to Culicoides. Overall this evidence suggests there is a minimal effector role of maternal IgE also that maternal IgE has waned prior to the onset of IgE synthesis in foals and does not support maternal priming of IgE responses in foals. Furthermore the total levels of IgE in any given foal are seen to be relatively high or low from soon after the onset of IgE synthesis, and most likely they are determined by genetic factors.
Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs
Resumo:
BACKGROUND Little is known about the pathologic changes in the epidural space after intervertebral disk (IVD) extrusion in the dog. OBJECTIVES To analyze the pathology of the epidural inflammatory response, and to search for correlations between this process and clinical findings. METHODS Clinical data from 105 chondrodystrophic (CD) and nonchondrodystrophic (NCD) dogs with IVD extrusion were recorded. Epidural material from these dogs was examined histopathologically and immunohistochemically. Using statistical analysis, we searched for correlations between severity of epidural inflammation and various clinical and pathologic variables. RESULTS Most dogs exhibited an epidural inflammatory response, ranging from acute invasion of neutrophils to formation of chronic granulation tissue. The mononuclear inflammatory infiltrates consisted mostly of monocytes and macrophages and only few T and B cells. Surprisingly, chronic inflammatory patterns also were found in animals with an acute clinical history. Severity of the epidural inflammation correlated with degree of the epidural hemorrhage and nucleus pulposus calcification (P = .003 and .040), but not with age, chondrodystrophic phenotype, neurologic grade, back pain, pretreatment, or duration. The degree of inflammation was statistically (P = .021) inversely correlated with the ability to regain ambulation. CONCLUSION AND CLINICAL IMPORTANCE Epidural inflammation occurs in the majority of dogs with IVD extrusion and may develop long before the onset of clinical signs. Presence of calcified IVD material and hemorrhage in the epidural space may be the triggers of this lesion rather than an adaptive immune response to the nucleus pulposus as suggested in previous studies. Because epidural inflammation may affect outcome, further research is warranted.
Resumo:
Objectives To prospectively evaluate histopathologic, blood cellular, serological and clinical changes in response to abatacept treatment in patients with primary Sjögren's syndrome (pSS). Methods Blood, saliva and minor salivary gland biopsies were obtained before and after the last of 8 doses of abatacept in 11 pSS patients. The histologic data evaluated the number of lymphocytic foci and of B- and T-cell subtypes (CD20(+) , CD3(+) , CD4(+) , CD8(+) ). The numbers of FoxP3(+) regulatory T-cells were measured and the FoxP3 /CD 3 ratio was calculated. Histologic data were compared with results from peripheral blood and with changes in saliva secretion. Results The numbers of lymphocytic foci decreased significantly (p=0.041). Numbers of local FoxP3(+) T-cells decreased significantly in percentage of total lymphocytic infiltrates (p=0.037). In the peripheral blood B-cells increased (p=0.038). This was due to an expansion of the naïve B cell pool (p=0.034). When adjusting for disease duration, an increase was also noted for total lymphocytes (p=0.044) and for CD 4 cells (p=0.009). Gamma globulins decreased significantly (p=0.005), but IgG reduction did not reach significance. Adjusted for disease duration, saliva production increased significantly (p=0.029). Conclusions CTLA4-Ig treatment significantly reduces glandular inflammation in pSS, induces several celluar changes and increases saliva production. Remarkably, this increase in saliva production is significantly influenced by disease duration.
Resumo:
An increasing number of lipid mediators have been identified as key modulators of immunity. Among these is a family of glycolipids capable of cellular uptake, loading onto the MHC-like molecule CD1d and stimulation of NKT cells. NKT cells are particularly interesting because they bridge innate and adaptive immunity by coordinating the early events of dendritic cell maturation, recruitment of NK cells, CD4 and CD8 T cells, and B cells at the site of microbial injury. As such, their therapeutic manipulation could be of the greatest interest in vaccine design or active immunotherapy. However, the use of NKT cells as cellular adjuvant of immunity in the clinic will require a better knowledge of the pharmacology of lipid agonists in order to optimize their action and avoid potential unseen off-target effects. We have been studying extracellular transport and cellular uptake of NKT agonists for the past few years. This field is confronted to a very limited prior knowledge and a small set of usable tools. New technology must be put in place and adapted to answering basic immunology questions related to NKT cells. The intimate link between the pharmacology of glycolipids and lipid metabolism makes us believe that great variations of bioactivity could be seen in the general population when NKT agonists are used therapeutically.
Resumo:
Only limited data are available about the precise mechanism leading to tissue inflammation and damage in patients with hidradenits suppurativa (HS). The central pathogenetic event in HS is the occlusion of the upper parts of the hair follicle leading to a perifollicular lympho-histiocytic inflammation. In early lesions, neutrophilic abscess formation and influx of mainly macrophages, monocytes and dendritic cells predominate. In chronic disease, the infiltrate expand with increased frequencies of B cells and plasma cells. In the inflammatory infiltrates toll like receptor 2 (TLR2) was highly expressed by infiltrating macrophages and dendritic cells indicating that stimulation of inflammatory cells by TLR2 activating microbial products may be important trigger factors in the chronic inflammatory process. Furthermore, the pro inflammatory cytokines IL-12 and IL-23 are abundantly expressed by macrophages infiltrating papillary and reticular dermis of HS skin. Both of these cytokines are believed to be important mediators in autoimmune tissue destruction and its blocking by biologics has been shown to be effective in the treatment of psoriasis. Especially IL-23 has been shown to be involved in the induction of a T helper cell subset producing IL-17, therefore, named Th17, which is distinct from the classical Th1/Th2 subsets. In chronic HS lesions IL-17-producing T helper cells were found to infiltrate the dermis. An overexpression of various other cytokines like IL-1beta, CYCL9 (MIG), IL-10 , IL-11 and BLC has been described in HS lesion whereas IL-20 and IL-22 have been shown to be down regulated. Similar to psoriasis also in HS the antimicrobial peptides beta defensin 2 and psoriasin are highly upregulated. This may at least in part explain the clinical finding that HS patients suffer only rarely from skin infections. Taken together the inflammatory reaction leading to HS are only poorly understood, but they show many similarity with other inflammatory reactions as e.g. in psoriasis.
Resumo:
In chronic lymphocytic leukemia (CLL), one of the best predictors of outcome is the somatic mutation status of the immunoglobulin heavy chain variable region (IGHV) genes. Patients whose CLL cells have unmutated IGHV genes have a median survival of 8 years; those with mutated IGHV genes have a median survival of 25 years. To identify new prognostic biomarkers and molecular targets for therapy in untreated CLL patients, we reanalyzed the raw data from four published gene expression profiling microarray studies. Of 88 candidate biomarkers associated with IGHV somatic mutation status, we identified LDOC1 (Leucine Zipper, Down-regulated in Cancer 1), as one of the most significantly differentially expressed genes that distinguished mutated from unmutated CLL cases. LDOC1 is a putative transcription factor of unknown function in B-cell development and CLL pathophysiology. Using a highly sensitive quantitative RT-PCR (QRT-PCR) assay, we confirmed that LDOC1 mRNA was dramatically down-regulated in mutated compared to unmutated CLL cases. Expression of LDOC1 mRNA was also vii strongly associated with other markers of poor prognosis, including ZAP70 protein and cytogenetic abnormalities of poor prognosis (deletions of chromosomes 6q21, 11q23, and 17p13.1, and trisomy 12). CLL cases positive for LDOC1 mRNA had significantly shorter overall survival than negative cases. Moreover, in a multivariate model, LDOC1 mRNA expression predicted overall survival better than IGHV mutation status or ZAP70 protein, among the best markers of prognosis in CLL. We also discovered LDOC1S, a new LDOC1 splice variant. Using isoform-specific QRT-PCR assays that we developed, we found that both isoforms were expressed in normal B cells (naïve > memory), unmutated CLL cells, and in B-cell non-Hodgkin lymphomas with unmutated IGHV genes. To investigate pathways in which LDOC1 is involved, we knocked down LDOC1 in HeLa cells and performed global gene expression profiling. GFI1 (Growth Factor-Independent 1) emerged as a significantly up-regulated gene in both HeLa cells and CLL cells that expressed high levels of LDOC1. GFI1 oncoprotein is implicated in hematopoietic stem cell maintenance, lymphocyte development, and lymphomagenesis. Our findings indicate that LDOC1 mRNA is an excellent biomarker of overall survival in CLL, and may contribute to B-cell differentiation and malignant transformation.
Resumo:
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^
Resumo:
Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).
Resumo:
We have previously isolated anti-FcepsilonRIalpha autoantibodies from phage libraries of healthy donors and urticaria patients. Strikingly, the same antibody, LTMalpha15, was isolated from both libraries. Sequence analysis revealed a germline configuration of the LTMalpha15 variable heavy (V(H)) chain with a slightly mutated variable light (V(L)) chain supporting its classification as a natural autoantibody. Distribution analysis of anti-FcepsilonRIalpha autoantibodies by functional or serological tests delivered conflicting data. For this reason we have developed a new real-time PCR to analyse the distribution of LTMalpha15V(H) in healthy donors and urticaria patients. Our new bioinformatic program permitted the design of a minor groove binder (MGB) TaqMan probe that specifically detected the LTMalpha15V(H). We were able to demonstrate a broad range of rearranged V(H) gene copy number without any correlation to the state of health. Monitoring LTMalpha15V(H) gene copy number in a single donor over a period of 70 days revealed a time-related fluctuation of circulating B cells carrying LTMalpha15V(H). We propose that our real-time PCR may serve as a model for the quantification of natural antibody sequences at a monoclonal level.
Resumo:
Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy.