904 resultados para Power system stabilization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Existing studies that question the role of planning as a state institution, whose interests it serves together with those disputing the merits of collaborative planning are all essentially concerned with the broader issue of power in society. Although there have been various attempts to highlight the distorting effects of power, the research emphasis to date has been focused on the operation of power within the formal structures that constitute the planning system. As a result, relatively little attention has been attributed to the informal strategies or tactics that can be utilised by powerful actors to further their own interests. This article seeks to address this gap by identifying the informal strategies used by the holders of power to bypass the formal structures of the planning system and highlight how these procedures are to a large extent systematic and (almost) institutionalised in a shadow planning system. The methodology consists of a series of semi-structured qualitative interviews with 20 urban planners working across four planning authorities within the Greater Dublin Area, Ireland. Empirical findings are offered that highlight the importance of economic power in the emergence of what essentially constitutes a shadow planning system. More broadly, the findings suggest that much more cognisance of the structural relations that govern how power is distributed in society is required and that ‘light touch’ approaches that focus exclusively on participation and deliberation need to be replaced with more radical solutions that look towards the redistribution of economic power between stakeholders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.