998 resultados para Poverty Dynamics
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Resumo:
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.
Resumo:
Niche construction, by which organisms modify the environment in which they live, has been proposed to affect the evolution of many phenotypic traits. But what about the evolution of a niche constructing trait itself, whose expression changes the pattern of natural selection to which the trait is exposed in subsequent generations? This article provides an inclusive fitness analysis of selection on niche constructing phenotypes, which can affect their environment from local to global scales in arbitrarily spatially subdivided populations. The model shows that phenotypic effects of genes extending far beyond the life span of the actor can be affected by natural selection, provided they modify the fitness of those individuals living in the future that are likely to have inherited the niche construction lineage of the actor. Present benefits of behaviors are thus traded off against future indirect costs. The future costs will generally result from a complicated interplay of phenotypic effects, population demography and environmental dynamics. To illustrate these points, I derive the adaptive dynamics of a trait involved in the consumption of an abiotic resource, where resource abundance in future generations feeds back to the evolutionary dynamics of the trait.
Resumo:
This paper presents a pilot project (INTERNORM) funded by the University of Lausanne (2010 - 2013) to support the involvement of civil society organisations (CSO) in international standard setting bodies such as the ISO. It analyses how a distinct participatory mechanism can influence the institutional environment of technical diplomacy in which standards are shaped. The project is an attempt to respond to the democratic deficit attested in the field of international standardisation, formally open to civil society participation, but still largely dominated by expert knowledge and market players. Many international standards have direct implications on society as a whole, but CSOs (consumers and environmental associations, trade unions) are largely under-represented in negotiation arenas. The paper draws upon international relations literature on new institutional forms in global governance and studies of participation in science and technology. It argues that there are significant limitations to the rise of civil society participation in such global governance mechanisms. The INTERNORM project has been designed as a platform of knowledge exchange between CSO and academic experts, with earmarked funding and official membership to a national standardisation body. But INTERNORM cannot substitute for a long- established lack of resources in time, money and expertise of CSOs. Despite high entry costs into technical diplomacy, participation thus appears as less a matter of upstream engagement, or of procedure only, than of dedicated means to shift the geometry of actors and the framing of socio-technical change.
Resumo:
BACKGROUND: The risk of end stage renal disease (ESRD) is increased among individuals with low income and in low income communities. However, few studies have examined the relation of both individual and community socioeconomic status (SES) with incident ESRD. METHODS: Among 23,314 U.S. adults in the population-based Reasons for Geographic and Racial Differences in Stroke study, we assessed participant differences across geospatially-linked categories of county poverty [outlier poverty, extremely high poverty, very high poverty, high poverty, neither (reference), high affluence and outlier affluence]. Multivariable Cox proportional hazards models were used to examine associations of annual household income and geospatially-linked county poverty measures with incident ESRD, while accounting for death as a competing event using the Fine and Gray method. RESULTS: There were 158 ESRD cases during follow-up. Incident ESRD rates were 178.8 per 100,000 person-years (105 py) in high poverty outlier counties and were 76.3 /105 py in affluent outlier counties, p trend = 0.06. In unadjusted competing risk models, persons residing in high poverty outlier counties had higher incidence of ESRD (which was not statistically significant) when compared to those persons residing in counties with neither high poverty nor affluence [hazard ratio (HR) 1.54, 95% Confidence Interval (CI) 0.75-3.20]. This association was markedly attenuated following adjustment for socio-demographic factors (age, sex, race, education, and income); HR 0.96, 95% CI 0.46-2.00. However, in the same adjusted model, income was independently associated with risk of ESRD [HR 3.75, 95% CI 1.62-8.64, comparing the < $20,000 income group to the > $75,000 group]. There were no statistically significant associations of county measures of poverty with incident ESRD, and no evidence of effect modification. CONCLUSIONS: In contrast to annual family income, geospatially-linked measures of county poverty have little relation with risk of ESRD. Efforts to mitigate socioeconomic disparities in kidney disease may be best appropriated at the individual level.