796 resultados para Poly-unsaturated Fatty Acids
Resumo:
Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.
Resumo:
The use of the fish silage as an ingredient in feed for aquatic organisms is an alternative to solve sanitary and environmental problems caused by the lack of an adequate destination for the residues generated by the fishing industry. It would also lower the costs with feed, and consequently the fish production costs, since the expenses with the feed account for approximately 60% of the total cost. The objective of this study was to evaluate the fatty acid composition of the acid silage (AS), biological silage (BS) and enzymatic silage (ES) produced from discardings of the culture and from processing residues of the Nile tilapia (Oreochromis niloticus). The values found for lipids (dry matter basis) were: 12.45; 12.25 and 12.17 g 100 g(-1) for BS, AS, and ES, respectively. The fatty acids present in the lipid fraction of the silages are predominantly unsaturated. Oleic acid was present in larger amounts (30.49, 28.60 and 30.60 g 100 g(-1) of lipids for BS, AS and ES, respectively). Among saturated fatty acids, palmitic and stearic acids were present in larger amounts. Only traces of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids were found. The silages produced from discardings of the culture and processing residues of the Nile tilapia are not a good source of EPA and DHA for fish feeds.
Resumo:
The dissected carcass composition and fatty acid profiles of intermuscular fat from 110 male goat kids from six genotypes i.e. Boer x Angora (BA), Boer x Feral (BF), Boer x Saanen (BS), Feral x Feral (1717), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared. Carcass tissue distribution for various genotypes was: muscle (63-66%), fat (10-13%) and bone (21-24%). Genotype significantly (P < 0.05) influenced the carcass composition; BA and FF carcasses had significantly higher muscle to bone ratio, while carcasses from BS kids were leaner compared to other genotypes. However, the two slaughter weight groups did not differ significantly (P > 0.05) in terms of carcass composition, when compared at the same carcass weight. In the present study, significant (P < 0.01) correlations were observed between percentage of muscle, fat and bone in most of the primal cuts and that in the carcass side. The main saturated fatty acids (SFAs) identified were palmitic (16:0) and stearic acid (18:0), while oleic acid (18: 1, omega9) was the main unsaturated fatty acid (UFA) in the intermuscular fat from goat kids. There were significant (P < 0.05) differences between genotypes in the proportions of individual fatty acids. Adipose tissue from BS kids had significantly higher UFAs (mainly oleic acid) and thus had a significantly lower melting point compared to other genotypes. There were significantly higher proportions of palmitic acid (35%) in the adipose tissue from Capretto kids compared to that from Chevon kids (22%). The concentration of UFAs increased in the adipose tissue from Capretto to Chevon carcasses. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertação de Mestrado em Tecnologia e Segurança Alimentar
Resumo:
Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.
Resumo:
The aim of this work was the use of NIR technology by direct application of a fiber optic probe on back fat to analyze the fatty acid composition of CLA fed boars and gilts. 265 animals were fed 3 different diets and the fatty acid profile of back fat from Gluteus medius was analyzed using gas chromatography and FT-NIR. Spectra were acquired using a Bruker Optics Matrix-F duplex spectrometer equipped with a fiber optic probe (IN-268-2). Oleic and stearic fatty acids were predicted accurately; myristic, vaccenic and linoleic fatty acids were predicted with lower accuracy, while palmitic and α-linolenic fatty acids were poorly predicted. The relative percentage of fatty acids and NIR spectra showed differences in fatty acid composition of back fat from pigs fed CLA which increased the relative percentage of SFA and PUFA while MUFA decreased. Results suggest that a NIR fiber optic probe can be used to predict total saturated and unsaturated fatty acid composition, as well as the percentage of stearic and oleic. NIR showed potential as a rapid and easily implemented method to discriminate carcasses from animals fed different diets.
Resumo:
The effect of caponisation on fat composition by parts (wing, breast, thigh, and drumstick) and tissues (skin, subcutaneous adipose tissue, intermuscular adipose tissue and muscle) was examined in the present study and fatty acid profiles of abdominal fat and edible meat by parts and tissue components were determined. The sample was made up of twenty-eight castrated and twenty male Penedesenca Negra chicks reared under free-range conditions and slaughtered at 28 wk of age; the birds were castrated at four or eight weeks. Caponisation significantly increased (P < 0.01) the chemical fat content in all parts (16.31% to 37.98% in breast; 21.98% to 34.13% in wing; 21.09% to 49.57% in thigh; 14.33% to 24.82% in drumstick) and led to minor modifications in fat haracteristics, particularly in the thigh and the drumstick, where the unsaturated vs. saturated fatty acid ratio increased from 1.31 to 1.76 ( P < 0.01) and from 1.48 to 2.07 (P < 0.01), respectively. Delaying the age of castration from 4 to 8 weeks increased this ratio by 0.35 in the edible meat. Even though the profile of the abdominal fat is less saturated in capons, all changes occurring on fat quality after caponisation indicate that increased fatness after castration does not imply worse fat nutritional properties.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.
Resumo:
Background: Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function and other CVD risk factors. Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation and endothelial activation. Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFA with MUFA attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did not impact significantly on %FMD or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a potential public health strategy for CVD risk reduction.
Resumo:
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Resumo:
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y-p/s value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.