937 resultados para Poly(propylene) (PP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copolycondensation of N,N’-bis(4-hydroxybutyl)-biphenyl-3,4,3',4'-tetracarboxylic diimide at 20 and 25 mol% with bis(4-hydroxybutyl)-2,6-naphthalate produces PBN-based copoly(ester-imide)s that not only crystallise but also form a (smectic) mesophase upon cooling from the melt. Incorporation of 25 mol% imide in PBN causes the glass transition temperature (measured by DSC) to rise from 51 to 74 °C, a significant increase relative to PBN. Furthermore, increased storage- (G'), loss- (G'') and elastic (E) moduli are observed for both copoly(ester-imide)s when compared to PBN itself. Structural analysis of the 20 mol% copolymer by X-ray powder and fibre diffraction, interfaced to computational modelling, suggests a crystal structure related to that of α-PBN, in space group P-1, with cell dimensions a = 4.74, b = 6.38, c = 14.45 Å, α = 106.1, β = 122.1, γ = 97.3°, ρ = 1.37 g cm-3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel redox- and glucose-responsive hydrogels have been synthesized by simple mixing of poly(vinyl alcohol) (PVA) and 4-mercaptophenylboronic acid (MPBA) in aqueous solutions (pH > 9) in an oxidative aqueous media. These hydrogels are produced through the formation of disulfide linkages between MPBA molecules in an oxidative environment (oxygen dissolved in solution or hydrogen peroxide added to the reaction mixture) and complexation via dynamic covalent bonds between PVA and MPBA dimer. These hydrogels show degradation in solutions of l-glutathione and d-glucose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers which can respond to externally applied stimuli have found much application in the biomedical field due to their (reversible) coil–globule transitions. Polymers displaying a lower critical solution temperature are the most commonly used, but for blood-borne (i.e., soluble) biomedical applications the application of heat is not always possible, nor practical. Here we report the design and synthesis of poly(oligoethylene glycol methacrylate)-based polymers whose cloud points are easily varied by alkaline phosphatase-mediated dephosphorylation. By fine-tuning the density of phosphate groups on the backbone, it was possible to induce an isothermal transition: A change in solubility triggered by removal of a small number of phosphate esters from the side chains activating the LCST-type response. As there was no temperature change involved, this serves as a model of a cell-instructed polymer response. Finally, it was found that both polymers were non cytotoxic against MCF-7 cells (at 1 mg·mL–1), which confirms promise for biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to investigate the biodegradation of the polymers and blend films of polypropylene (PP) and poly(hidroxybutirate-valerate) (PHBV), after UV radiation to facilitate the PP degradation, which is a polymer with long chains difficult to degrade by biological agents present in the environment. This polymer is outstanding by its mechanical properties and versatility of industrial and commercial use and the PHBV by its quick biodegradability in the environment. Blends of these materials could to present a commitment between mechanical properties and biodegradability to execute its function and after the discard to have lesser lifetime in the garbage landfills. Another aspect of this work is the controlling effect of PP on PHBV, influencing its degradation time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hemocompatibility of nanoparticles is of critical importance for their systemic administration as drug delivery systems. Formulations of lipid-core nanocapsules, stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan (LNC and LNC-CS), were prepared and characterized by laser diffraction (D[4,3]: 129 and 134 nm), dynamic light scattering (119 nm and 133 nm), nanoparticle tracking (D50: 124 and 139 nm) and particle mobility (zeta potential: -15.1 mV and + 9.3 mV) analysis. In vitro hemocompatibility studies were carried out with mixtures of nanocapsule suspensions in human blood at 2% and 10% (v/v). The prothrombin time showed no significant change independently of the nanocapsule surface potential or its concentration in plasma. Regarding the activated partial thromboplastin time, both suspensions at 2% (v/v) in plasma did not influence the clotting time. Even though suspensions at 10% (v/v) in plasma decreased the clotting times (p < 0.05), the values were within the normal range. The ability of plasma to activate the coagulation system was maintained after the addition of the formulations. Suspensions at 2% (v/v) in blood showed no significant hemolysis or platelet aggregation. In conclusion, the lipid-core nanocapsules uncoated or coated with chitosan are hemocompatible representing a potential innovative nanotechnological formulation for intravenous administration. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinyl butyral)-polyaniline-sodium montmorillonite nanocomposites were prepared via polymerization of aniline between clay mineral platelets at two different pH levels (2.0 and 5.0), followed by dispersion of the polyaniline-sodium montmorillonite nanocomposite in a poly(vinyl butyral) solution. A comparison was made of the effect of the pH levels and the polyaniline-sodium montmorillonite nanocomposite precursor on the final structures of the poly(vinyl butyral) nanocomposites and their electrical conductivities. X-ray diffraction patterns revealed the formation of nanocomposites at both pH levels. UV-Vis spectra indicated that the polyaniline formed at both pH levels was conductive, with the UV-Vis spectra presenting a band at 420 nm corresponding to the polaronic form and the beginning of a new band at 600 nm indicating the presence of polaronic segments. FTIR spectra revealed the peaks of the groups present in polyaniline and poly(vinyl butyral) nanocomposites. The electrical conductivities of the polyaniline and poly(vinyl butyral) nanocomposites prepared at pH 2.0 were lower than those of the same nanocomposites prepared at pH 5.0, probably due to the lower formation of polyaniline chains in a more acidic dispersion and to the final configuration of polyaniline in the nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)(2)) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.