862 resultados para Planets and satellites: dynamical evolution and stability
Resumo:
The failure of facial prostheses is caused by limitations in their flexibility and durability. Therefore, we evaluated the effects of disinfection and aging on Shore A hardness and deterioration of a facial silicone with different pigmentations. Twenty samples with addition of each pigment (ceramic (C), make-up (M)) and without pigment (L) were made. For each pigment type and no pigment, 10 samples were subjected to two types of disinfectant solution (soap (S) and Efferdent (E)), totaling sixty samples. The specimens were disinfected three times per week for 60 days, and subjected to accelerated aging for 1008 h. The hardness of the facial silicone was measured with a durometer, and its deterioration was evaluated by obtaining the weight difference over time. Both the hardness and weight of the samples were measured at baseline, after chemical disinfection, and periodically during accelerated aging (252, 504, and 1008 h). Deterioration was calculated during the periods between baseline and chemical disinfection, and between baseline and each aging period. The results were analyzed using three-way repeated measures ANOVA and the Tukey's HSD Post-hoc test (alpha = 0.05). Specifically, samples containing pigment exhibited significantly higher hardness and deterioration values than those lacking pigment (P < 0.05). In addition, period of time (disinfection and accelerated aging) statistically increased the hardness and deterioration values of the silicone (P < 0.05). It can be concluded that both pigment and time statistically affected the hardness and deterioration of the silicone elastomer. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk greater than or equal to 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levee sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.
Resumo:
The mechanical and thermo-oxidative degradation of high density polyethylene (HDPE) was measured in a twin-screw extruder using various processing conditions. Two types of HDPE, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturation were analysed. Mild screw profiles, having mainly conveying elements, have short mean residence times then profiles with kneading discs and left hand elements. Carbonyl and traps-vinylene group concentrations increased, whereas vinyl group concentration decreased with number of extrusions. Higher temperature profiles intensified these effects. The thermo-mechanical degradation mechanism begins with chain scission in the longer chains due to their higher probability of entanglements. These macroradicals then react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the levels of extrusion temperature, shear and vinyl end groups content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than does the Ziegler-Natta type. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the present work, methylcellulose produced from sugar cane bagasse was characterized by FTIR, WAXD, DTA and TGA techniques. Two samples were synthesized: methylcellulose A and rnethylcellulose B. The only difference in the process was the addition of fresh reactants during the preparation of methylcellulose B. The ratio between the absorption intensities of the C-H stretching band at around 2900 cm(-1) and C-H stretching at around 3400 cm(-1) for methylcellulose B is higher than for methylcellulose A, indicating that methylcellulose B showed an increase in the degree of substitution (DS). Methylcellulose A presents a more heterogeneous structure, which is similar to the original cellulose as seen through FTIR and DTA. Methylcellulose B showed thermal properties similar to commercial methylcellulose. The modification of rnethylcellulose preparation method allows the production of a material with higher DS, crystallinity and thermal stability in relation to the original cellulose and to methylcellulose A. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180
Resumo:
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.