608 resultados para Piperidine alkaloids
Resumo:
Plants belonging to Berberis are reported in several folklore medicinal pharmacopeias and are used in traditional medicines in Asia and European countries. The plants have been used in the preparation of various traditional and synthetic medicines since pre-historic times for wound healing, fever, eye disease, jaundice, vomiting during pregnancy, rheumatism, kidney and gall balder stones, and several other illnesses. Their healing properties are appear to be due to the presence of secondary metabolites and important alkaloids with different pharmacological activities. Their antibacterial, antifungal, antiviral, anti-diabetic, and anti-tumor activities as well as positive effects on the cardiovascular and body immune systems have been reported. Root extracts of some species of the plant genus contain quinine which acts as a powerful anti-malarial agent. The main chemical constituents of Berberis plants are alkaloids, steroids, glycosides, flavonoids, saponins, terpenoids and reducing sugars. Of these alkaloids, berberine is the most important. The present review focuses on recent advances in phytopharmacological and ethnomedicinal uses of plants belonging to Berberis genus.
Resumo:
Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.
In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.
An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.
Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, 2016.
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
La calcification de la valve aortique (CVA) est une maladie cardiovasculaire de plus en plus répandue, particulièrement en Amérique du Nord. Elle cause le rétrécissement de la valve aortique et le seul traitement actuellement disponible est le remplacement chirurgical. Des études menées par le Dr Patrick Mathieu (Institut de Cardiologie et de Pneumologie de Québec) ont montré qu’une surexpression d’une ectonucléotide pyrophosphatase/phosphodiestérase de type 1 (ENPP1) est à l’origine de cette sténose. Une solution à cette maladie serait donc de trouver un inhibiteur d’ENPP1. Inspirées des travaux du groupe de Pfizer visant ENPP1 pour le traitement de la chondrocalcinose articulaire et l’ostéoarthrite, quelques familles d’inhibiteurs de type quinazoline-4-pipéridine sulfamides (QPS) ont été synthétisés et testées in vitro. Une étude en modélisation moléculaire sur le site potentiel de liaison des inhibiteurs sur ENPP1 est en cours, en collaboration avec le Pr Patrick Lagüe (Université Laval, Département de biochimie, microbiologie et bio-informatique) et son équipe pour optimiser le design de la structure des composés. Les composés d’une des familles, les QPS-pyrimidine, ont été testés in vitro sur quelques lignées cellulaires cancéreuses (HT-1080, HT-29, M21 et MCF-7) pour mesurer leur activité antiproliférative. Ces composés ont une inhibition de croissance médiane (IC50) de l’ordre du micromolaire et représentent donc un point de départ intéressant pour la mise au point de nouveaux traitements anticancéreux.
Resumo:
The topic of this thesis is the DFT computational study of the mechanisms for the synthesis of chiral 3,4,5-trisubstituted piperidines and 2,6-disubstituted morpholines. The goal of this synthesis is to use, the same substrate containing two electrophilic sites: an α,β-unsaturated ester and a ketone, which evolve according to the nucleophile used (cyanide, phenyl sulfide) through different addition and cyclization reactions. A quaternary ammonium salt is used as a catalyst for these reactions, which leads to a diastereoisomeric excess both for the reactions of morpholine and piperidine products. Studies in silico of the pathways of these reactions explain the chemoselection and diasteroselection deriving from the two nucleophiles used. In this case of piperidine products, it was also possible to validate the hypothesis of a concerted nucleophilic addition mechanism on the α,β-unsaturated site and cyclization due to an intramolecular Michael addition.
Resumo:
Advanced analytical methodologies were developed to characterize new potential active MTDLs on isolated targets involved in the first stages of Alzheimer’s disease (AD). In addition, the methods investigated drug-protein bindings and evaluated protein-protein interactions involved in the neurodegeneration. A high-throughput luminescent assay allowed the study of the first in class GSK-3β/ HDAC dual inhibitors towards the enzyme GSK-3β. The method was able to identify an innovative disease-modifying agent with an activity in the micromolar range both on GSK-3β, HDAC1 and HDAC6. Then, the same assay reliably and quickly selected true positive hit compounds among natural Amaryllidaceae alkaloids tested against GSK-3β. Hence, given the central role of the amyloid pathway in the multifactorial nature of AD, a multi-methodological approach based on mass spectrometry (MS), circular dichroism spectroscopy (CD) and ThT assay was applied to characterize the potential interaction of CO releasing molecules (CORMs) with Aβ1-42 peptide. The comprehensive method provided reliable information on the different steps of the fibrillation process and regarding CORMs mechanism of action. Therefore, the optimal CORM-3/Aβ1−42 ratio in terms of inhibitory effect was identified by mass spectrometry. CD analysis confirmed the stabilizing effect of CORM-3 on the Aβ1−42 peptide soluble form and the ThT Fluorescent Analysis ensured that the entire fibrillation process was delayed. Then the amyloid aggregation process was studied in view of a possible correlation with AD lipid brain alterations. Therefore, SH-SY5Y cells were treated with increasing concentration of Aß1-42 at different times and the samples were analysed by a RP-UHPLC system coupled with a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode. Each lipid class profiling in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained from the untreated. The approach underlined some peculiar lipid alterations, suitable as biomarkers, that might be correlated to Aß1-42 different aggregation species.
Resumo:
My PhD research focused on the development of environmentally sustainable methods for peptide synthesis. The traditional and toxic solvents and bases used in solid-phase peptide synthesis (SPPS) were replaced with eco-friendly alternatives to reduce the environmental impact. In particular, N-octylpyrrolidone was found to be an effective green solvent in combination with dimethyl carbonate, resulting in a 63-66% reduction in process mass intensity (PMI). In addition, a green base, DEAPA, was identified for Fmoc removal, which showed comparable results to piperidine, while being less regulated and toxic, and able to better control aspartimide-related side reactions. The study extended beyond SPPS to explore liquid-phase peptide synthesis (LPPS) and solution-phase peptide synthesis (SolPPS) using propylphosphonic anhydride (T3P®) as a coupling reagent. The developed green SolPPS using Cbz amino acids achieved exceptional efficiency, minimal racemisation and a PMI of 30 to introduce a single amino acid in the iterative process. This PMI value is the lowest ever reported for an oligopeptide synthesis protocol. This technique was extended to N-Boc amino acids in DCM, requiring aqueous workups and achieving 95% purity of Leu-Enkephalin. Finally, T3P® was found to be suitable for LPPS. An anchor, mimicking a resin, was used to allow precipitation or solubilisation of the growing anchored-peptide, depending on the polarity of the solvent used. Anisole and DCM resulted in a pentapeptide purity of over 95%. While at Oxford University, I synthesized a cleavable fragment that is sensitive to cathepsin B (CatB) and incorporated it into a cyclic antisense oligonucleotide (ASO) targeting the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ASO demonstrated good stability in a simulated in vivo environment using human serum and high affinity with complementary RNA. The Cyclic-ASO was opened by CatB in optimal conditions. Experiments highlight therapeutic potential and a novel method for controlling cyclic oligonucleotide activity, potentially enhancing cellular uptake.