916 resultados para Petroleum - Prospecting
Resumo:
PetroChina and other national petroleum incorporations need rigorous procedures and practical methods in risk evaluation and exploration decision at home and abroad to safeguard their international exploration practice in exploration licence bidding, finding appropriate ratio of risk sharing with partners, as well as avoiding high risk projects and other key exploration activities. However, due to historical reasons, we are only at the beginning of a full study and methodology development in exploration risk evaluation and decision. No rigorous procedure and practical methods are available in our exercises of international exploration. Completely adopting foreign procedure, methods and tools by our national incorporations are not practical because of the differences of the current economic and management systems in China. The objective of this study is to establish a risk evaluation and decision system with independent intellectual property right in oil and gas exploration so that a smooth transition from our current practice into international norm can take place. The system developed in this dissertation includes the following four components: 1. A set of quantitative criteria for risk evaluation is derived on the basis of an anatomy of the parameters from thirty calibration regions national wide as well as the characteristics and the geological factors controlling oil and gas occurrence in the major petroleum-bearing basins in China, which provides the technical support for the risk quantification in oil and gas exploration. 2. Through analysis of existing methodology, procedure and methods of exploration risk evaluation considering spatial information are proposed. The method, utilizing Mahalanobis Distance (MD) and fuzzy logic for data and information integration, provides probabilistic models on the basis of MD and fuzzy logic classification criteria, thus quantifying the exploration risk using Bayesian theory. A projection of the geological risk into spatial domain provides a probability map of oil and gas occurrence in the area under study. The application of this method to the Nanpu Sag shows that this method not only correctly predicted the oil and gas occurrence in the areas where Beibu and Laoyemiao oil fields are found in the northwest of the onshore area, but also predicted Laopu south, Nanpu south and Hatuo potential areas in the offshore part where exploration maturity was very low. The prediction of the potential areas are subsequently confirmed by 17 exploration wells in the offshore area with 81% success, indicating this method is very effective for exploration risk visualization and reduction. 3. On the basis of “Methods and parameters of economic evaluation for petroleum exploration and development projects in China”, a ”pyramid” method for sensitivity analysis was developed, which meets not only the need for exploration target evaluation and exploration decision at home, but also allows a transition from our current practice to international norm in exploration decision. This provides the foundation for the development of a software product “Exploration economic evaluation and decision system of PetroChina” (EDSys). 4. To solve problem in methodology of exploration decision, effort was made on the method of project portfolio management. A drilling decision method was developed employing the concept of geologically risked net present value. This method overcame the dilemma of handling simultaneously both geological risk and portfolio uncertainty, thus casting light into the application of modern portfolio theory to the evaluation of high risk petroleum exploration projects.
Resumo:
Luo Ning ( Mineralogy, Petrology, Deposit Mineralogy) Directed by Fu Liyun With the increase of the level of exploration and development, North China field, as one of the maturing fields in the east, has gradually turned their prospecting targets to frontiers such as deep zones, lithologic hydrocarbon reservoirs, low permeable layers, special lithostromes, etc, which propose new challenges to mating technique of exploration engineering. In it, the special lithostrome of clay carbonate in Shu-Lu cave in Middle Flank exploration area locates in Es_3 generating rock. The area distribution is large, formation thickness is over 100 meters, the oil accumulation condition is excellent, prognostic reserves is over 80,000,000 tons, but how to effectively stimulate the special low permeable and fractured reservoir has become the bottle neck problem of stimulation and stable yields. In this thesis, through comprehensive evaluation and analysis of lithology, lithomechanics, hydrocarbon reservoir characteristics, the characteristics of fluid flow through porous medium and the stimulation measures in the past, we acquire new cognition of clay carbonate reservoirs, in addition, the research and application of first hydraulic fracturing has gained positive effect and formed commensurable comprehensive reservoir evaluation technique and mating engineering technique of hydraulic fracturing. The main cognitions and achievements are as follows: 1.Study of geological information such as lithololy analysis and nuclear magnetic logging, etc, indicates that clay carbonate formation of Shu-Lu cave is anisotropic, low permeable with high shale content, whose accumulation space gives priority to microcracks. 2.The analysis of lithomechanics of clay carbonate indicates that the hardness is moderate, Young’s modulus is between that of sandstone and limestone, clay carbonate presents plastic property and its breakdown pressure is high because of the deep buried depth. 3.The analysis of the drillstem test curves indicates that the flow and build-up pressure curve of clay carbonate of Shu-Lu cave mainly has three types: formation contamination block-up type, low permeable type, formation energy accumulation slowness type; the reservoir characteristics presents double porosity media, radial compounding, uniform flow vertical fracture, isotropy, moniliform reservoir type. The target well Jingu 3 belongs to moniliform reservoir type. 4.Through recognition and re-evaluation of the treatment effect and technologic limitations of acidizing, acid fracturing and gelled acidizing in the past, based on the sufficient survey and study of hydraulic fracturing home and abroad, combined with comprehensive formation study of target well, we launched the study of the optimization of hydraulic fracturing technique, forming the principal clue and commensurable mating technology aimed at clay carbonate formation, whose targets are preventing leak off, preventing sand bridge, preventing embedment, controlling fracture height, forming long fracture. 5. Recognition of stimulation effect evaluation.
Resumo:
Abstract In order to provide basic data for evaluation of the petroleum potential in the deep water area of the northern margin of the South China Sea (SCS), present-day thermal regime and basin tectonothermal evolution are reconstructed and the maturation history of the Cenozoic major source rocks in the study area is derived. The present-day geothermal regime in the deep water area of the northern margin of SCS is defined according to the geothermal gradient, thermal properties and heat flow data. Tectonic subsidence history is reconstructed based on borehole and seismic data, and accordingly the stretching episodes are determined from the subsidence pattern. Heat flow history in the deep water area of the northern margin of SCS is estimated on a finite time, laterally non-uniform and multi-episode stretching model. Maturation history of the main source rocks in the study area is estimated through EASYRo% kinetic model and thermal history, and the potential of petroleum in the deep water area of the northern margin of SCS is evaluated based on the data above. The results show that the present-day geothermal regime in the deep water area of the northern margin of SCS is characterized by “hot basin” with high geothermal gradient (39.1±7.4℃/km) and high heat flow (77.5±14.8 mW/m2), and that the Qiongdongnan Basin (QDNB) underwent three stretching episodes and consequently suffered three heating episodes (Eocene, Oligocene and Pliocene time) with highest paleo-heat flow of 65~90 mW/m2 at the end of the Pliocene, that the Pearl River Mouth Basin (PRMB) two stretching and two heating episodes (Eocene, Oligocene time) with highest paleo-heat flow of 60~70 mW/m2 at the end of the Oligocene, and that the source rocks matured drastically responding to the heating episodes. There are four hydrocarbon generation kitchens in the deep water area of the northern margin of SCS which are favor of its bright petroleum perspective. Tectonothermal analysis indicates that the present-day geothermal regime which is characterized with “hot basin” in the deep water area of the PRMB resulted mainly from the Cenozoic stretching as well as faulting and magmatic activities during the Neotectonic period, and that the Pliocene heating episode of the QDNB is coupled with the transition from sinistral to dextral gliding of the Red Rive fault, and that the deep water basins in the northern margin of SCS are typical of multiple rifting which caused multi-episode heating process.
Resumo:
Migration carriers act as the “Bridges” connecting source rock and traps and play important roles in petroleum migration and accumulation system. Among various types of carriers, sandstone carrier constitutes the basis of carrier system consisting of connected sandstone bodies, of sand-bodies connected with other carriers, such as faults and/or unconformities. How do we understand sandstone carrier beyond the traditional reservoirs concept? How could we characterize quantitatively this kind of carriers for petroleum migration? Such subjects are important and difficult contents in dynamic studies on hydrocarbon migration and accumulation. Sandstone carrier of Chang 8 member in Longdong area of Ordos Basin is selected as the research target in this thesis. Through conducting integrated reservoir analysis on many single wells, the correlation between single sandstone thickness and oil thickness seems good. Sketch sandstone is defined in this thesis as the principal part of carrier based on systematical analysis on lithology and sandstone thickness. Geometry connectivity of sandstone bodies was identified by the spatial superposition among them and was proved by the oil property features in oilfields. The connectivity between sandstone carriers is also hydrodynamically studied by observing and analyzed various diagenetic phenomena, especially the authigenic minerals and their forming sequence. The results were used to characterize transporting capability of sandstone carriers during the key petroleum migration periods. It was found that compaction and cementation are main causes to reduce pore space, and resolution may but not so importantly increases pore space after the occurrence of first migration. The cements of ferrocalcite and kiesel seem like the efficient index to demonstrate the hydraulic connection among sandy bodies. Diagenetic sequence and its relationship with petroleum migration phases are analyzed. Sandstone carrier of Chang 8 member was then characterized by studying their pore space and permeable properties. The results show an average porosity and permeability of Chang 8 carriers are respectively 8% and 0.50md, belongs to low porosity - low permeability reservoirs. Further, the physical properties of Chang 81 member are commonly better than those of Chang 82 member. Methods to reconstruct property of sandstone carrier during petroleum migration phase (late Jurassic) are built based on diagenetic sequence. Planal porosity, porosity and permeability of sandstone carrier in this period are statistically analyzed. One combining index - product of thickness and ancient porosity - is selected as the idea parameter to characterize sandstone carrier of late Jurassic after contrast with other parameters. Reservoirs of Chang 8 member in Longdong area are lithological reservoir controlled by sand body in which oil layers in middle part are clamped with dry layers in upper and lower parts, in a sandwich way. Based a newly proposed “migration-diagensis-remigration” model in low permeability sandstone of Chang 8 member in Longdong area, oil migration and accumulation processes during different periods are simulated with the reconstructed sandstone carriers system. Results match well with current reservoir distributions. Finally, suggestions for next favorable exploration areas are given based on all research achievements.
Resumo:
In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.
Resumo:
In the petroleum exploration industry, it is very important to simulate the evolvement of wave field beneath our earth in the aspects of time and space quickly and effectively. Because of the huge data size in petroleum exploration and also the strict requirement of time limit in the actual process of production, simplification of models and approximation of algorithm are necessary. At the same time, every fine improvement to algorithm has its great practical significance and use value. Based on the reasons above, this dissertation researches the separable approximation methods of space-wave number domain for One-way Wave Operator and gets the conclusions as follow: 1. It is insufficient to value One-way Wave Operator purely from the mathematical modulus and phase error, while, holding some specific structural character of operator should be more important. Because, the evaluation criterion of One-way Wave Operator’s imaging ability is quite complicate and obscured, which is similar to the evaluation of an artwork. 2. We can not search for a best or most effective One-way Wave Operator approximation solution for all. However, to different speed model and precision requirement the best approximation solution does exist which is maybe also a compromise, because it is very beneficial to One-way Wave Operator to take full advantage of speed model’s pre-tested information.
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.
Resumo:
The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.
Resumo:
As an important branch of electrical prospecting method, the artificial source frequency domain electromagnetism method has received more and more attention. But when conducts the fundamental research, people often isolated study some concrete method, so the research results of one method are very difficult to apply to another method directly. This article will possess the artificial source frequency domain EM method to an 1D model simply. It is stratified medium model, with an electric or magnetic source in or outside of it. Then take the horizontal electric dipole source as an example to introduce how to computing the EM field in stratified medium. Because layer matrix is the key of establishing equations, so we call it the layer-matrix method. The key of layer-matrix method is establishing equations by using layer matrixes in wavenumber(kx, ky, z) domain, then obtains the electromagnetic field value of wavenumber domain. After Fourier transform, we can get electromagnetic field of any position in spatial domain. The layer matrix technique theoretically can calculate electromagnetic field of any position for any source, is suitable for many kinds of electromagnetic method. After introduction of the layer matrix method, this article has done some CSAMT, MCSEM and Wireless Electro-Magnetic Method (WEM) modeling with layer matrix method separately. In CSAMT modeling, we get electromagnetic field dissemination characteristics considering wave number of the air, and obtain three-dimensional distribution characteristics of the electromagnetic field. In MCSEM modeling, we get electromagnetic field dissemination characteristics with and without considering the airwave, and obtain three-dimensional distribution characteristics of electromagnetic field. In WEM modeling, we get electromagnetic field’s difference between considering the ionosphere and not considering it, and recognize the ionosphere’s influence of electromagnetic field. With the layer matrix technique, we have got some new understandings of EM dissemination rules of different situations. All analysis results indicate that the layer-matrix technique is credible and effective, and are worthy of further thorough research and development.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of "two stages and three kinds of metallogensis" has established. According to further work through geochemistry research including trace element, REE, S, Pb and Sr isotope, as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Bae on above work, study of ore deposit comparison has been carried out, and metallogesis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow: 1.Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The mian metallogenic period is hot-water sedimentation period. 2.Ore deposit geochemistry research indicated that the metal sulfides have charcateristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotope content is homogenous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as tuff is one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material. 3.There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase( C type) and liquid phase (D type). Their size is 2~7um, and principal components is H2O. Both kinds of fluid inclusion have freezing point temperature -7.1~-2.4℃ and -5.5~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8~361.6℃ and 101.4~279.9℃, which peak value around 270℃ and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation. 4.Through the comparison research, that Longtoushan ore deposit has main characteristic of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.
Resumo:
Sedimentary provenance direction,sedimentary facies,reservoir geological characteristic,pore structure; physical property characteristic,reservoir classification and evaluation ,forthermore,favorable area area are forecasted of Yanchang formation in ZhiDan region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on,in the thesis. The following fruits are mainly achieved in this paper: Yanchang formation stratum is divided and correlated in this entire region, and the characteristic of oil layer unit is detailed discussed , respectively. According to main marker bed and supplementary ones.and research result shows that the source of provenance direction during Yanchang Formation mianly is north-east. Delta and lake are mainly developed in study area ,sub-facies and micro-facies are divided,distribution of sedimentary micro-facies in plane and palaeogeographic evolution are described,and gentle slope type- shallow water delta depositional model is established. Fine-grain arkose sandstone is the main reservoir,and which have experienced such different degree diagenesis as compaction, cementation, replacement and dissolution, and in which compaction and cementation are mainly factors to reduce sandstone physical property and dissolution effectively improved physical property during burial diagenesis procedure. All reservoirs of Yanchang Formation have entered A period of late diagenetic stage according to scheme of diagenesis period division . Intergranular porosity,dissolution porosity,fissure porosity are main pore types. And porosity structure are analyse by mercury penetration capillary pressure parameter,fine-shortness type and fine- length throat type are mainly developed. as a whole,the reservoir, with the characteristic of porosity and permeability altering apparently,strong inhomogeneity , is a medium- porosity and medium permeability one. In plane,higher- porosity and higher-permeability are corresponded well with distributary channel area, physical property and inhomogeneity are affected by both deposition and diagenesis,and distributary channel and underwater distributary channel are favorable facies . According to such characteristic as lithology,physical property,pore structure ,diagenesis and sandstone distribution, the sandy reservoir can be classified 4 types, and the main sandy in every oil layer unit are evaluated according to the standard. The analysis result of petroleum concentration rule shows that Yanchang Formation are with not only favourable oil source rock,reservoir,covering combination ,but also good entrapment condition in study area. Lithology and structure-lithology oil pool are mainly developed ,based on condition of favorable reservoir developments,accounting for deliverability and sandstone superface elevation,zone of profitabilitis are forecasted.
Resumo:
Ordos basin is a large-scale craton overlapping basin, which locates in western North China platform and possesses abundant hydrocarbon resources. Ansai area in 2007 to extend the head of Chang10 of Yangchang Formation has made breakthrough progress in the region, long a high of Gao52 was Chang10 industrial oil flow, for oil exploration Ansai Oil Field opened a new chapter. in 2008, high of Gao52, Wang519, Gao34 producing wells area of building and found the existence of Chang10 great potential for the discovery of Chang10 Reservoir, Ansai Oil Field for a new direction, showing a good exploration development prospects.The study of occurrence and distribution features of hydrocarbon should be made by new theories and evolutions of sedimentology, sequence stratigraphy, reservoir sedimentology and petroleum geology form different angles on the base of regional geology background. Ansai Oil Field is in mid Shanbei Slope, which is a considerable producing zone of Ordos basin. Chang10 of Yangchang Formation is an important oil-bearing series, which sedimentary formation was formed in Indosinian orogeny, Late Triassic, sedimentary background is a momentary uplifting in Ordos basin, and exploration and exploitation of hydrocarbon in this area is very important. To further descripte disciplinarian of accumulation hydrocarbon, carefully study on sedimentary facies, reservoir type and disciplinarian of accumulation hydrocarbon of Chang10 of Yangchang Formation in study area is needed. By collecting date of field profile, outcrop, core and many other geological, through sedimentary and oil geological analysis, sedimentary facies types were identified, distributing of sedimentary facies and extension of sand body were analyzed too. Finally, the main controlling factors of hydrocarbon and the favorable areas were found out by deeply studying sedimentary system and disciplinarian of accumulation oil&gas in Chang10 of Yangchang Formation, Late Triassic in Ansai Oil Field. Chang10 of Yangchang Formation is main study formation, which is divided into three members (Chang101, Chang102 and Chang103), Chang101 is subdivided into three (Chang1011, Chang1012and Chang1013) reservoirs. By defining Layered borderline between every member and detailed describing rock and electro characteristic, member zonation become more reasonable and accurate also sedimentary facies and disciplinarian of accumulation oil&gas in study area are confirmed Through researching sedimentary facies, reservoir sand and hydrocarbon migration, accumulation, distribution, hydrocarbon accumulation models of Chang10 of Yangchang Formation in study area is pointed out, which is lithologic hydrocarbon reservoir and tectonic-lithologic hydrocarbon reservoir. Different play is formed by different processes and factors. Through analysis of reservoir property, trap type and accumulation model, several favorable exploration areas can be found out in Chang 10 reservoirs (Chang1011, Chang1012and Chang1013) of the Ansai Oil Field.
Resumo:
Abstract:Little fundamental work on petroleum exploration and production of Zuunbayan Subbasin, Mongolia has been done before because of the backward economy and petroleum industry techniques in this country, which also results in our little knowledge of reservoir characteristics of this area. This paper focused on the sedimentary system, sedimentary facies, reservoir characteristics and their genesis distribution of Zuunbayan subbasin with various drilling, well logging, seismic, coring and outcrop data, aiming at providing significant guidances for the petroleum exploration and production of Zuunbayan area. Therefore, several conclusions have been achieved as follows: ①In Zuunbayan Subbasin, there are two chief source areas with Tarkhyata and Totoshan Uplifts in the southeast and Saykhandulaan Uplift in the west, respectively, while two subsidiary ones in the northeast and southwest of this subbasin. The sedimentary system of alluvial fan-fan delta is formed in the southeast highland, meanwhile braided river-braided river delta develops in the western ramp region and fan delta in the southern palaeohigh. ②There are middle to high permeability reservoirs in the upper Zuunbayan Formation and the upper member of lower Zuunbayan Formation meanwhile low-porosity and permeability to ultra-low permeability ones in Tsagaan Tsav Formation and the middle and lower members of lower Zuunbayan Formation. Combing with sedimentary facies belt, oil sources conditions and tectonic settings, favorable reservoir belts have been proved to be existing in the fan delta front reservoirs of lower Zuunbayan – Tsagaan Tsav Formation in the central uplift faulted zone as well as the braided river front ones of lower Zuunbayan-Tsagaan Tsav Formation in Zuunbayan nose anticlinal structural belts. ③The reservoir lithologic composition is complex and also related to volcanic activities. Generally, the types of lithologic composition in Zuunbayan Subbasin are chiefly feldspathic litharenites with low compositional maturity and high-middle textural maturity. The rock constituents from upper Cretaceous to lower Zuunbayan Formation are mainly metamorphic rocks including cleaving stone, phyllite, quartzite and schist while volcanic tuffs and acidic extrusive rocks are the secondary; and in the Tsagaan Tsav Formation are mainly volcanic tuffs with subsidiary cleaving stone, phyllite, quartzite and schist. ④In this paper, high-quality reservoirs in the upper member of lower Zuunbayan Formation have been discovered in the drilled high production wells of favorable reservoir facies through sedimentary system and sedimentary facies research, which benefits the prospect and also will bring a new life for petroleum exploration and production of Zuunbayan Subbasin. Key words: sedimentary system, sedimentary facies, superior quality reservoir, Zuunbayan Subbasin, lower Zuunbayan Formation
Resumo:
Nowadays, the exploration of fractured reservoir plays a vital role in the further development of petroleum industry through out the world. Fractured hydrocarbon reservoirs are widely distributed in China. Usually, S-wave technique prevails, but it also has its disadvantage, prohibitive expense in S-wave data acquisition and processing. So directly utilizing P-wave data to detect fractures, comes to our mind. We briefly introduce theoretical model (HTI) for fractured reservoir. Then study Ruger’s reflectivity method to recognize reflection P-wave reflection coefficient of the top and bottom interface of HTI layer respectively, and its azimuth anisotropy character. Base on that study, we gives a review and comparison of two seismic exploration technologies for fractures available in the industry-- P-wave AVO and AVA. They has shown great potential for application to the oil and gas prediction of fractured reservoir and the reservoir fine description.Every technique has its disadvantage, AVO limited to small reflection angle; and AVA just offering relatively results. So that, We can draw a conclusion that a better way to any particular field is using synthesis of multiple data sources including core、outcrop、well-test、image logs、3D VSPs, generally to improve the accuracy.