892 resultados para Peptide bonds
Resumo:
The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.
Resumo:
[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.
Resumo:
The tripeptides Boc-Gly-Aib-m-ABA-OMe (I), Boc-beta Ala-Aib-m-ABA-OMe (II) and Boc-gamma Abu-Aib-rn-ABA-OMe (III) (Aib: alpha-aminoisobutyric acid, beta Ala: beta-alanine, gamma Abu: gamma-aminobutyric acid, m-ABA: meta-aminobenzoic acid) with homologated amino acids at the N-terminus, the rigid gamma-amino acid m-ABA at the C-terminus and the helicogenic Aib at the central position have been chosen to create unusual turns. Single crystal X-ray diffraction studies, solvent dependent NMR titrations and 2D NMR analysis reveal that peptides II and III adopt unusual turns of 11- and 12-membered rings stabilized by modified 4 -> 1 type intramolecular hydrogen bonds. Solution phase studies indicate that peptide I exists in the beta-turn conformation stabilized by 10-membered intramolecular hydrogen bonding.
Resumo:
The model amyloid peptide AAKLVFF was expressed as a His-tagged fusion protein with the immunoglobulin-binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single-domain protein. It is shown that expression of this model amyloid peptide is possible and is not hindered by aggregation. Formylation side reactions during the CNBr cleavage are investigated via synthesis of selectively formylated peptides.
Resumo:
The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/ 6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helicallike arrangements. Furthermore, calculations indicate that backbone ... side chain interactions involving the N-H of the amide groups and the pi clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand,MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.
Resumo:
Members of the Arenaviridae are a threat to public health and can cause meningitis and hemorrhagic fever, yet treatment options remain limited by a lack of effective antivirals. In this study, we found that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) complementary to viral genomic RNA were effective in reducing arenavirus replication in cell cultures and in vivo. PPMO complementary to the Junín virus genome were designed to interfere with viral RNA synthesis, translation, or both. However, only PPMO designed to potentially interfere with translation were effective in reducing virus replication. PPMO complementary to sequence that is highly conserved across arenaviruses and located at the 5’-termini of both genomic segments were effective against Junín, Tacaribe, Pichinde and Lymphocytic Choriomeningitis arenavirus-infected cell cultures, and suppressed viral titers in the livers of LCMV-infected mice. These results suggest that arenavirus 5’-genomic-termini represent promising targets for pan-arenavirus antiviral therapeutic development.
Resumo:
A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.
Resumo:
A series of heptapeptides comprising the core sequence Ab(16–20), KLVFF, of the amyloid b peptide coupled with paired N-terminal c-amino acids are investigated in terms of cytotoxicity reduction and binding to the full Ab peptide, both pointing to inhibition of fibrillisation for selected compounds. This is related to the self-assembly capacity of the heptapeptides.
Resumo:
A peptide amphiphile (PA) C16-KTTKS, containing a pentapeptide headgroup based on a sequence from procollagen I attached to a hexadecyl lipid chain, self-assembles into extended nanotapes in aqueous solution. The tapes are based on bilayer structures, with a 5.2 nm spacing. Here, we investigate the effect of addition of the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS) via AFM, electron microscopic methods, small-angle X-ray scattering and X-ray diffraction among other methods. We show that addition of SDS leads to a transition from tapes to fibrils, via intermediate states that include twisted ribbons. Addition of SDS is also shown to enhance the development of remarkable lateral ‘‘stripes’’ on the nanostructures, which have a 4 nm periodicity. This is ascribed to counterion condensation. The transition in the nanostructure leads to changes in macroscopic properties, in particular a transition from sol to gel is noted on increasing SDS (with a further reentrant transition to sol on further increase of SDS concentration). Formation of a gel may be useful in applications of this PA in skincare applications and we show that this can be controlled via development of a network of fine stranded fibrils.
Resumo:
The peptide AAKLVFF assembles into fibrils in water and nanotubes in methanol. Solid-state NMR data are consistent with fibrils constructed from β-sheet bilayers and nanotubes bounded by a wall of offset β-sheet monolayers. Remarkably distinct morphologies are thus traced to subtle differences in the arrangement of the same fundamental building blocks.
Resumo:
Background and Purpose: Calcitonin gene‐related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR•RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin‐converting enzyme‐1 (ECE‐1). However, it is not known if ECE‐1 regulates the resensitization of CGRP‐induced responses in functional arterial tissue. Experimental Approach: CLR, ECE‐1a‐d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA‐SMCs) and mesenteric arteries was analyzed by RT‐PCR and by immunofluorescence and confocal microscopy. CGRP‐induced signaling in cells was examined by measuring cAMP production and ERK activation. CGRP‐induced relaxation of arteries was measured by isometric wire myography. ECE‐1 was inhibited using the specific inhibitor, SM‐19712. Key Results: RMA‐SMCs and arteries contained mRNA for CLR, ECE‐1a‐d and RAMP1. ECE‐1 was present in early endosomes of RMA‐SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium‐independent relaxation of arteries. ECE‐1 inhibition had no effect on initial CGRP‐induced responses but reduced cAMP generation in RMA‐SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. Conclusions and Implications: ECE‐1 regulates the resensitization of responses to CGRP in RMA‐SMCs and mesenteric arteries. CGRP‐induced relaxation does not involve endothelium‐derived pathways. This is the first report of ECE‐1 regulating CGRP responses in SMCs and arteries. ECE‐1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Resumo:
The self-assembly of the peptide amphiphile (PA) hexadecyl-(β-alaninehistidine) is examined in aqueous solution, along with its mixtures with multilamellar vesicles formed by DPPC (dipalmitoyl phosphatidylcholine). This PA, denoted C16-βAH, contains a dipeptide headgroup corresponding to the bioactive molecule L-carnosine. It is found to selfassemble into nanotapes based on stacked layers of molecules. Bilayers are found to coexist with monolayers in which the PA molecules pack with alternating up−down arrangement so that the headgroups decorate both surfaces. The bilayers become dehydrated as PA concentration increases and the number of layers in the stack decreases to produce ultrathin nanotapes comprised of 2−3 bilayers. Addition of the PA to DPPC multilamellar vesicles leads to a transition to well-defined unilamellar vesicles. The unique ability to modulate the stacking of this PA as a function of concentration, combined with its ability to induce a multilamellar to unilamellar thinning of DPPC vesicles, may be useful in biomaterials applications where the presentation of the peptide function at the surface of self-assembled nanostructures is crucial.
Resumo:
The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.