636 resultados para Peakmoor sandstone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water injection in oil reservoirs is a recovery technique widely used for oil recovery. However, the injected water contains suspended particles that can be trapped, causing formation damage and injectivity decline. In such cases, it is necessary to stimulate the damaged formation looking forward to restore the injectivity of the injection wells. Injectivity decline causes a major negative impact to the economy of oil production, which is why, it is important to foresee the injectivity behavior for a good waterflooding management project. Mathematical models for injectivity losses allow studying the effect of the injected water quality, also the well and formation characteristics. Therefore, a mathematical model of injectivity losses for perforated injection wells was developed. The scientific novelty of this work relates to the modeling and prediction of injectivity decline in perforated injection wells, considering deep filtration and the formation of external cake in spheroidal perforations. The classic modeling for deep filtration was rewritten using spheroidal coordinates. The solution to the concentration of suspended particles was obtained analytically and the concentration of the retained particles, which cause formation damage, was solved numerically. The acquisition of the solution to impedance assumed a constant injection rate and the modified Darcy´s Law, defined as being the inverse of the normalized injectivity by the inverse of the initial injectivity. Finally, classic linear flow injectivity tests were performed within Berea sandstone samples, and within perforated samples. The parameters of the model, filtration and formation damage coefficients, obtained from the data, were used to verify the proposed modeling. The simulations showed a good fit to the experimental data, it was observed that the ratio between the particle size and pore has a large influence on the behavior of injectivity decline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 2007-2008 austral spring season, the ANDRILL (Antarctic Drilling project) Southern McMurdo Sound Project recovered an 1138-m-long core, representing the last 20 m.y. of glacial history. An extensive downhole logging program was successfully carried out. Due to drill hole conditions, logs were collected in several passes from the total depth at 1138.54 m below seafloor (mbsf) to 230 mbsf. After data correction, several statistical methods, such as factor analysis, cluster analysis, box-and-whisker diagrams, and cross-plots, were applied. The aim of these analyses was to use detailed interpretation of the downhole logs to obtain a description of the lithologies and their specific physical properties that is independent of the core descriptions. The sediments were grouped into the three main facies, diamictite, mudstone and/or siltstone, and sandstone, and the physical properties of each were determined. Notable findings include the high natural radioactivity values in sandstone and the high and low magnetic susceptibility values in mudstone and/or siltstone and in sandstone. A modified lithology cluster column was produced on the basis of the downhole logs and statistical analyses. It was possible to use the uranium content in the downhole logs to determine hiatuses and thus more accurately place the estimated hiatuses. Using analyses from current literature (geochemistry, clasts, and clay minerals) in combination with the downhole logs (cluster analysis), the depths 225 mbsf, 650 mbsf, 775 mbsf, and 900 mbsf were identified as boundaries of change in sediment composition, provenance, and/or environmental conditions. The main use of log interpretation is the exact definition of lithological boundaries and the modification of the paleoenvironmental interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acknowledgments This work was carried out with support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – Brazil, BG-Brazil and the University of Aberdeen. We would like to thank the following geologists for their support, camaraderie and countless hours of fieldwork: Claus Fallgatter, Victoria Valdez, Carla Puigdomenech, Guilherme Bozetti, Roberto Noll Filho and Arthur Giovannini, and we thank Lorena Moscardelli and an anonymous reviewer, whose constructive comments helped to improve the manuscript.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We would like to thank EPSRC for a Doctoral Training Grant (G.A.M) and the Erasmus programme for supporting the study visit to Turin (R.W). We would also like to thank Dr. Federico Cesano for SEM/EDX measurements and for fruitful discussion. Dr. Jo Duncan is thanked for his tremendous insight during XRD interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miocene to Pleistocene sand and sandstone were recovered at Ocean Drilling Program Site 974 in the Tyrrhenian Basin and Sites 976 and 977 in the Alboran Basin. Sand detrital modes were determined for 45 samples from these sites, as well as 10 samples of Spanish beach sand. At Site 974, the Pleistocene section includes a number of volcaniclastic (vitric ash) and terrigenous sand layers; the latter are heterogeneous and contain sedimentary and metamorphic lithic fragments. Submarine canyon and onshore drainage patterns suggest that the most likely source of this sediment is the Tiber River drainage basin in central Italy, where a Pleistocene volcanic field is superimposed on Apennine orogenic rocks. In contrast, the Miocene sand in Unit III at Site 974 may have been derived from local basement highs. The quartzolithic composition and preponderance of metamorphic and sedimentary lithic debris in sand samples from Unit II at Site 976, Unit I at Sites 977 and 978, and Unit I at Site 979 are consistent with derivation from metamorphic rocks and sedimentary cover sequences that crop out in the Betic Cordillera of southern Spain (976-978) and in the Rif of Northern Africa (979). The sedimentary to metamorphic lithic fragment ratios in these samples reflect the relative proportion of metamorphic and sedimentary rocks exposed in onshore source terranes. In contrast, the source of the few quartzose Pleistocene sands at Site 976 was likely the Flysch Trough Units that crop out near Gibraltar. The significant volcanic component in certain intervals at Sites 976 (upper Miocene) and 977 (lower Pliocene to Miocene) is consistent with widespread volcanic activity during basin inception and development. Mean sand detrital modes for sand subgroups from both the Alboran and Tyrrhenian Basin sites plot in the Recycled Orogenic and Magmatic Arc compositional fields of Dickinson et al. (1983, doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2), reflecting the hybrid tectonic histories of these basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program Expedition 308 (IODP308) drilled normal-pressured sediments from the Brazos-Trinity Basin IV and over-pressured sediments from the Ursa Basin on the northern slope of the Gulf of Mexico. The interstitial water samples from the normal-pressured basin show B concentrations and B isotopic compositions ranging from 255 to 631 µM (0.6 to 1.5 times of seawater value) and from +29.1 to +42.7 per mil (relative to NIST SRM 951), respectively. A wider range is observed both for B concentrations (292 to 865 µM, 0.7 to 2.1 times of seawater value) and d11B values (+25.5 to +43.2 per mil) of the interstitial water in the over-pressured basin. The down-core distribution of B concentrations and d11B values in the interstitial waters are sensitive tracers for assessing various processes occurring in the sediment column, including boron adsorption/desorption reactions involving clay minerals and organic matter in sediments as well as fluid migration and mixing in certain horizons and in the sediment column. In the normal-pressured basin adsorption/desorption reactions in shallow sediments play the major role in controlling the B content and B isotopic composition of the interstitial water. In contrast, multiple processes affect the B content and d11B of the interstitial water in the over-pressured Ursa Basin. There, the stratigraphic level of the maxima of B and d11B correspond to seismic reflectors. The intruded fluids along the seismic reflector boundary from high to low-topography mix with local interstitial water. Fluid flow is inferred in the Blue Unit (a coarse sandstone layer, connecting the high- to low-pressured region) from the freshening of interstitial water in Ursa Basin Site U1322, and upward flow by the overpressure expels fluid from the overburden above the Blue Unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuttings of Lower and Middle Keuper sediments of the INFLUINS-drilling in the central Thuringian Syncline were geochemically analysed. Indications about shifting depositional environments are interpreted from ratios of whole-rock element contents. For the middle part of sandstone cycle S 2 high heavy metal contents imply precipitation of sufidic ores during a short marine interval. Element contents are compared with potential source rocks in the southern part of the Baltic Shield, in the Lausitz Anticline Zone, in the Erzgebirge, in the moldanubian part, in the broad sense, of the Bohemian Massif, in the Münchberg Gneiss Massif and the Fichtelgebirge. The geochemical coincidence of investigated Keuper sediments is highest with grantioid and gabbroic rocks of southern Scandinavia. Granodiorite rocks of the Lausitz are also possible sources, whereas granites of the Fichtelgebirge and the Bohemian Massif are less probable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.