951 resultados para Parallel to grain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is a concise explanation of the normative background to strength grading in Europe, addressing important aspects that are commonly misunderstood by structural engineers and timber researchers. It also highlights changes that are being made to the standards to: incorporate requirements of the construction products regulations; add improvements to the system to accommodate the latest knowledge and technology; and widen the application of the standards. Where designs need to be optimised, there is an opportunity to use the system more intelligently, in combination with the latest technology, to better fit design values to the true properties of the timber resource. This can bring a design enhancement equivalent to effort improving other aspects of the structure, such as connectors and reinforcement. Parallel to this, researchers working on other aspects of structural improvement need to understand what grades really mean in respect of the properties of the timber, in order to correctly analyse the results of testing. It is also useful to know how techniques used in grading can assist with material properties characterisation for research. The amount of destructive testing involved in establishing machine grading settings and visual grading assignments presents a barrier to greater use of local timber, and diversification of commercial species, so it is important that any researcher assessing the properties of such species should consider, from the outset, doing the research in a way that can contribute to a grading dataset at a later date. This paper provides an overview of what is required for this.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to resist lateral loads, modern methods of timber construction are reliant on the in-plane shear strength of the walls orientated parallel to the applied action. In closed panel systems, the shear stresses are transferred to the foundations by the sole plate through the sheathing board, which is usually mechanically jointed to the timber frame. Since closed panels are delivered to site as single units, access to the internal bottom rail is rather restricted and novel, efficient solutions to secure the panel to the substrate are required. Sole plate fixing components for open and closed panel systems were tested in isolation and combination in order to validate a simplistic version of the weakest link theory. As a result, findings were embedded into a software database with a direct link to a previously developed sole plate and racking design application. This integrated process facilitates the structural optimization of the sole plate detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Silurian-Devonian Galway Granite Complex (GGC ~425-380Ma) is defined here as a suite of granitoid plutons that comprise the Main Galway Granite Batholith and the Earlier Plutons. The Main Batholith is a composite of the Carna Pluton in the west and the Kilkieran Pluton in the east and extends from Galway City ~130km to the west. The Earlier Plutons are spatially, temporally and structurally distinct, situated northwest of the Main Batholith and include the Roundstone, Omey, Inis and Letterfrack Plutons. The majority of isotopic and structural data currently available pertain to the Kilkieran Pluton, several tectonic models have already been devised for this part of the complex. These relate emplacement of the Kilkieran Pluton to extension across a large east-west Caledonian lineament, i.e. the Skird Rocks Fault, during late Caledonian transtension. No chronological data have been published that directly and accurately date the emplacement of the Carna Pluton or any of the Earlier Plutons. There is also a lack of data pertaining to the internal structure of these intrusions. Accordingly, no previous study has established the mechanisms of emplacement for the Earlier Plutons and only limited work is available for the Carna Pluton. As a consequense of this, constituents of the GGC have not previously been placed in a context relative to each other or to regional scale Silurio-Devonian kinematics. The current work focuses on the Omey, Roundstone and Carna Plutons. Here, results of detailed field and Anisotropy of Magnetic Susceptibiliy (AMS) fabric studies are presented. This work is complemented by geological mapping that focuses on fault dynamics and contact relationships. Interpretation of AMS data is aided by rock magnetic experiment data and petrographic microstructural evaluations of representative samples. A new geological map of the the Omey Pluton demonstrates that this intrusion has a defined roof and base which are gently inclined parallel to the fold hinge of the Connemara Antiform. AMS and petrographic data show the intrusion is cross cut by NNW-SSE shear zones that extend into the country rock. These pre-date and were active during magma emplacement. It is proposed that the Omey pluton was emplaced as a discordant phacolith. Pre-existing subvertical D5 faults in the host rock were reactived during emplacement, due to regional sinistral transpression, and served as centralised ascent conduits. A central portion of the Roundstone Pluton was mapped in detail for the first time. Two facies are identified, G1 forms the majority of the pluton and coeval G2 sheets cross cut G1 at the core of the pluton. NNW-SSE D5 faults mapped in the country rock extend across the pluton. These share a geometrical relationship with the distribution of submagmatic strain in the pluton and parallel the majoity of mapped subvertical G2 dykes. These data indicate that magma ascent was controlled by NNW-SSE conduits that are inherently related to those identifed in the Omey Pluton. It is proposed that the Roundstone Pluton is a punched laccolith, the symmetry and structure of which was controlled by pre-exising host rock structures and regional sinistral transpressive stress which presided during emplacement. Field relationships show the long axis of the Carna Pluton lies parallel to mulitple NNW-SSE shear zones. These are represented on a regional scale by the Clifden-Mace Fault which cross cuts the core of this intrusion. AMS and petrographic data show concentric emplacement fabrics were tectonically overprinted as magma cooled from the magmatic state due to this faulting. It is proposed that the Clifden-Mace Fault system was active during ascent and emplacement of the magma and that pluton inflation only terminated as this controlling structure went into compression due to the onset of regional transtension. U-Pb zircon laser ablation inductively coupled mass spectrometry (LA-ICP-MS) data has been compiled from four sample sites. New geochronological data from the Roundstone Pluton (RD1 = ± 3.2Ma) represent the oldest age determination obtained from any member of the GGC and demonstrates that this pluton predates the Carna Pluton by ~10Ma and probably intruded synchronously with the Omey Pluton (~422.5 ± 1.7Ma). Chronological data from the Carna Pluton (CN2 = 412.9 ± 2.5Ma; CN3 = 409.8 ± 7.2Ma; CN4 = 409.6 ± 3.6Ma) represent the first precise magma crystallisation age for this intrusion. This work shows this pluton is 10Ma older than the Kilkieran Pluton and that the supply of magma into the Carna Pluton had terminated by ~409Ma. Chronological, magnetic and field data have been utilised to evaluate the kinematic evolution of the Caledonides of western Ireland throughout the construction of the GGC. It is proposed that the GGC was constructed during four distinct episodes. The style of emplacement and the conduits used for magma transport to the site of emplacement was dependent on the orientation of local structures relative to the regional ambiant stress field. This philosophy is used to critically evaluate and progress existing hypotheses on the transition from regional transpression to regional transtension at the end of the Caledonian Orogeny.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study experimentally and computationally the dynamics of granular flow during impacts where intruders strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free and remains in balance with the intruder, despite the latter's rapid deceleration. Simulations indicate that this observation is insensitive to grain properties, which can be explained by the separation of time scales between intergrain force dynamics and intruder dynamics. Assuming there is a comparable separation of time scales, we expect that our results are applicable to a broad class of dynamic or transient granular flows. Our results suggest that descriptions of static-in-time granular flows might be extended or modified to describe these dynamic flows. Additionally, we find that accurate grain-grain interactions are not necessary to correctly capture the granular flow in this regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micromagnetic ripple structures on the surfaces of thick specimens of ultra-soft magnetic material having strong surface anisotropy Ks favouring out-of-surface magnetization have been calculated. These ripples have wavelengths of the order of 0.1 μm and extend to a depth ∼ √A/Ms, where A is the exchange constant and Ms is the saturation magnetization. The wave-vectors of the ripple structures are either transverse or parallel to the bulk magnetization. Both structures have lower energy than the one-dimensional structure discussed by O'Handley and Woods, and they exhibit stronger normal magnetization. The transverse structure requires a surface anisotropy Ks ≥ 0.80K0, where is that required for the one-dimensional structure. The threshold for longitudinal ripples is 0.84K0. It is suggested that the transverse structure probably constitutes the ground state. The magnitudes of Ks and A should be obtainable from measurements of the ripple wavelength and amplitude, and Ms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An MHD flow is considered which is relevant to horizontal Bridgman technique for crystal growth from a melt. In the unidirectional parallel flow approximation an analytical solution is found accounting for the finite rectangular cross section of the channel in the case of a vertical magnetic field. Numerical pseudo-spectral solutions are used in the cases of arbitrary magnetic field and gravity vector orientations. The vertical magnetic field (parallel to the gravity) is found to be he most effective to damp the flow, however, complicated flow profiles with "overvelocities" in the comers are typical in the case of a finite cross-section channel. The temperature distribution is shown to be dependent on the flow profile. The linear stability of the flow is investigated by use of the Chebyshev pseudospectral method. For the case of an infinite width channel the transversal rolls instability is investigated, and for the finite cross-section channel the longitudinal rolls instability is considered. The critical Gr number values are computed in the dependence of the Ha number and the wave number or the aspect ratio in the case of finite section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A two dimensional staggered unstructured discretisation scheme for the solution of fluid flow problems has been developed. This scheme stores and solves the velocity vector resolutes normal and parallel to each cell face and other scalar variables (pressure, temperature) are stored at cell centres. The coupled momentum; continuity and energy equations are solved, using the well known pressure correction algorithm SIMPLE. The method is tested for accuracy and convergence behaviour against standard cell-centre solutions in a number of benchmark problems: The Lid-Driven Cavity, Natural Convection in a Cavity and the Melting of Gallium in a rectangular domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.