968 resultados para PROGESTIN RECEPTOR EXPRESSION
Resumo:
DEC-205 (CD205) belongs to the macrophage mannose receptor family of C-type lectin endocytic receptors and behaves as an antigen uptake/processing receptor for dendritic cells (DC). To investigate DEC-205 tissue distribution in human leukocytes, we generated a series of anti-human DEC-205 monoclonal antibodies (MMRI-5, 6 and 7), which recognized epitopes within the C-type lectin-like domains 1 and 2, and the MMRI-7 immunoprecipitated a single similar to 200 kDa band, identified as DEC-205 by mass spectrometry. MMRI-7 and another DEC-205 mAb (MG38), which recognized the epitope within the DEC-205 cysteine-rich and fibronectin type II domain, were used to examine DEC-205 expression by human leukocytes. Unlike mouse DEC-205, which is reported to have predominant expression on DC, human DEC-205 was detected by flow cytometry at relatively high levels on myeloid blood DC and monocytes, at moderate levels on B lymphocytes and at low levels on NK cells, plasmacytoid blood DC and T lymphocytes. MMRI-7 F(ab')(2) also labeled monocytes, B lymphocytes and NK cells similarly excluding reactivity due to non-specific binding of the mAb to Fc gamma R. Tonsil mononuclear cells showed a similar distribution of DEC-205 staining on the leukocytes. DEC-205-specific semiquantitative immunoprecipitation/western blot and quantitative reverse transcriptase-PCR analysis established that these leukocyte populations expressed DEC-205 protein and the cognate mRNA. Thus, human DEC-205 is expressed on more leukocyte populations than that were previously assumed based on mouse DEC-205 tissue localization studies. The broader DEC-205 tissue expression in man is relevant to clinical DC targeting strategies and DEC-205 functional studies.
GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype
Resumo:
Background: The urokinase receptor (uPAR) is important in the process of extracellular matrix degradation occurring during cancer cell invasion and metastasis. We wished to quantify uPAR on the surfaces of normal mammary epithelial cells (HMEC) and 6 well-known breast cancer cell lines using flow cytometry. Materials and Methods: Cell surface uPAR was labelled with a monoclonal antibody, and this was detected with a florescent-labelled second antibody and accurately measured using flow cytometry. The measured fluorescent signals of the stained cells were interpolated with those of Quantum Simply Cellular bead standards to determine the number of uPAR sites per cell. Results: The breast cancer cell lines ranged from 13,700 to 50,800 uPAR sites per cell, whilst HMEC cells had only 2,500 sites. Conclusions: This simple and reliable method showed that the expression of cell surface uPAR is higher in the breast cancer cell lines than in the normal mammary cells.
Resumo:
1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.
Resumo:
Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.