940 resultados para PLASMODIUM-SPOROZOITES
Resumo:
This protocol describes a method for obtaining rodent Plasmodium parasite clones with high efficiency, which takes advantage of the normal course of Plasmodium in vitro exoerythrocytic development. At the completion of development, detached cells/merosomes form, which contain hundreds to thousands of merozoites. As all parasites within a single detached cell/merosome derive from the same sporozoite, we predicted them to be genetically identical. To prove this, hepatoma cells were infected simultaneously with a mixture of Plasmodium berghei sporozoites expressing either GFP or mCherry. Subsequently, individual detached cells/merosomes from this mixed population were selected and injected into mice, resulting in clonal blood stage parasite infections. Importantly, as a large majority of mice become successfully infected using this protocol, significantly less mice are necessary than for the widely used technique of limiting dilution cloning. To produce a clonal P. berghei blood stage infection from a non-clonal infection using this procedure requires between 4 and 5 weeks.
Resumo:
The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.
Resumo:
During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.
Resumo:
The clinical records of 432 P. falciparum and P. vivax infected volunteer male inmates of the Maryland House of Corrections in Jessup, Maryland, were studied to determine (1) the clinical and parasitologic courses of infections in both parasite species, and (2) the influence of previous homologous and/or heterologous strain exposures on subsequent infections. The clinical and parasitologic courses of infection with both P. falciparum and P. vivax species indicated that: (a) there were characteristic strain related differences between P. falciparum and P. vivax. P. falciparum strains were more apt to cause severe infections than P. vivax strains. (b) Blood-induced infections produced significantly shorter prepatent and incubation periods than mosquito-induced. (c) Blacks tolerated the infections better than whites and, (d) homologous and heterologous strain immunities persisted with previous malaria history. In previously exposed cases, clinical manifestations were moderate, peak fever lowered, and peak parasitemias limited. (e) Anti-malarial drugs were effective in reducing sexual and asexual forms of the malaria parasite, and limiting peak fevers, irrespective of method of induction, race, parasite strain and species, and drug type used.^ Given these findings, and the current worldwide resurgence of malaria, this study has major implications in terms of setting malaria control and public health policies in both developed and developing countries.^
Resumo:
We have analyzed DNA sequences from world-wide geographic strains of Plasmodium falciparum and found a complete absence of synonymous DNA polymorphism at 10 gene loci. We hypothesize that all extant world populations of the parasite have recently derived (within several thousand years) from a single ancestral strain. The upper limit of the 95% confidence interval for the time when this most recent common ancestor lived is between 24,500 and 57,500 years ago (depending on different estimates of the nucleotide substitution rate); the actual time is likely to be much more recent. The recent origin of the P. falciparum populations could have resulted from either a demographic sweep (P. falciparum has only recently spread throughout the world from a small geographically confined population) or a selective sweep (one strain favored by natural selection has recently replaced all others). The selective sweep hypothesis requires that populations of P. falciparum be effectively clonal, despite the obligate sexual stage of the parasite life cycle. A demographic sweep that started several thousand years ago is consistent with worldwide climatic changes ensuing the last glaciation, increased anthropophilia of the mosquito vectors, and the spread of agriculture. P. falciparum may have rapidly spread from its African tropical origins to the tropical and subtropical regions of the world only within the last 6,000 years. The recent origin of the world-wide P. falciparum populations may account for its virulence, as the most malignant of human malarial parasites.
Resumo:
To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-γ-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0.0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-γ production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-γ production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.
Resumo:
A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.
Resumo:
The malarial parasite dramatically alters its host cell by exporting and targeting proteins to specific locations within the erythrocyte. Little is known about the mechanisms by which the parasite is able to carry out this extraparasite transport. The fungal metabolite brefeldin A (BFA) has been used to study the secretory pathway in eukaryotes. BFA treatment of infected erythrocytes inhibits protein export and results in the accumulation of exported Plasmodium proteins into a compartment that is at the parasite periphery. Parasite proteins that are normally localized to the erythrocyte membrane, to nonmembrane bound inclusions in the erythrocyte cytoplasm, or to the parasitophorous vacuolar membrane accumulate in this BFA-induced compartment. A single BFA-induced compartment is detected per parasite and the various exported proteins colocalize to this compartment regardless of their final destinations. Parasite membrane proteins do not accumulate in this novel compartment, but accumulate in the endoplasmic reticulum (ER), suggesting that the parasite has two secretory pathways. This alternate secretory pathway is established immediately after merozoite invasion and at least some dense granule proteins also use the alternate pathway. The BFA-induced compartment exhibits properties that are similar to the ER, but it is clearly distinct from the ER. We propose to call this new organelle the secondary ER of apicomplexa. This ER-like organelle is an early, if not the first, step in the export of Plasmodium proteins into the host erythrocyte.
Resumo:
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.
Resumo:
Continual exposure of malarial parasite populations to different drugs may have selected not only for resistance to individual drugs but also for genetic traits that favor initiation of resistance to novel unrelated antimalarials. To test this hypothesis, different Plasmodium falciparum clones having varying numbers of preexisting resistance mechanisms were treated with two new antimalarial agents: 5-fluoroorotate and atovaquone. All parasite populations were equally susceptible in small numbers. However, when large populations of these clones were challenged with either of the two compounds, significant variations in frequencies of resistance became apparent. On one extreme, clone D6 from West Africa, which was sensitive to all traditional antimalarial agents, failed to develop resistance under simple nonmutagenic conditions in vitro. In sharp contrast, the Indochina clone W2, which was known to be resistant to all traditional antimalarial drugs, independently acquired resistance to both new compounds as much as a 1,000 times more frequently than D6. Additional clones that were resistant to some (but not all) traditional antimalarial agents acquired resistance to atovaquone at high frequency, but not to 5-fluoroorotate. These findings were unexpected and surprising based on current views of the evolution of drug resistance in P. falciparum populations. Such new phenotypes, named accelerated resistance to multiple drugs (ARMD), raise important questions about the genetic and biochemical mechanisms related to the initiation of drug resistance in malarial parasites. Some potential mechanisms underlying ARMD phenotypes have public health implications that are ominous.
Resumo:
The comparison of malaria indicators among populations that have different genetic backgrounds and are uniformly exposed to the same parasite strains is one approach to the study of human heterogeneities in the response to the infection. We report the results of comparative surveys on three sympatric West African ethnic groups, Fulani, Mossi, and Rimaibé, living in the same conditions of hyperendemic transmission in a Sudan savanna area northeast of Ouagadougou, Burkina Faso. The Mossi and Rimaibé are Sudanese negroid populations with a long tradition of sedentary farming, while the Fulani are nomadic pastoralists, partly settled and characterized by non-negroid features of possible caucasoid origin. Parasitological, clinical, and immunological investigations showed consistent interethnic differences in Plasmodium falciparum infection rates, malaria morbidity, and prevalence and levels of antibodies to various P. falciparum antigens. The data point to a remarkably similar response to malaria in the Mossi and Rimaibé, while the Fulani are clearly less parasitized, less affected by the disease, and more responsive to all antigens tested. No difference in the use of malaria protective measures was demonstrated that could account for these findings, and sociocultural or environmental factors do not seem to be involved. Known genetic factors of resistance to malaria did not show higher frequencies in the Fulani. The differences in the immune response were not explained by the entomological observations, which indicated substantially uniform exposure to infective bites. The available data support the existence of unknown genetic factors, possibly related to humoral immune responses, determining interethnic differences in the susceptibility to malaria.
Resumo:
In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria.
Resumo:
Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC50 (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.
Resumo:
Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Whereas Plasmodium vivax and Plasmodium knowlesi use the Duffy blood group antigen, Plasmodium falciparum uses sialic acid residues of glycophorin A as receptors to invade human erythrocytes. P. knowlesi uses the Duffy antigen as well as other receptors to invade rhesus erythrocytes by multiple pathways. Parasite ligands that bind these receptors belong to a family of erythrocyte-binding proteins (EBP). The EBP family includes the P. vivax and P. knowlesi Duffy-binding proteins, P. knowlesi β and γ proteins, which bind alternate receptors on rhesus erythrocytes, and P. falciparum erythrocyte-binding antigen (EBA-175), which binds sialic acid residues of human glycophorin A. Binding domains of each EBP lie in a conserved N-terminal cysteine-rich region, region II, which contains around 330 amino acids with 12 to 14 conserved cysteines. Regions containing binding residues have now been mapped within P. vivax and P. knowlesi β region II. Chimeric domains containing P. vivax region II sequences fused to P. knowlesi β region II sequences were expressed on the surface of COS cells and tested for binding to erythrocytes. Binding residues of P. vivax region II lie in a 170-aa stretch between cysteines 4 and 7, and binding residues of P. knowlesi β region II lie in a 53-aa stretch between cysteines 4 and 5. Mapping regions responsible for receptor recognition is an important step toward understanding the structural basis for the interaction of these parasite ligands with host receptors.
Resumo:
Plasmodium falciparum, the agent of malignant malaria, is one of mankind’s most severe scourges. Efforts to develop preventive vaccines or remedial drugs are handicapped by the parasite’s rapid evolution of drug resistance and protective antigens. We examine 25 DNA sequences of the gene coding for the highly polymorphic antigenic circumsporozoite protein. We observe total absence of silent nucleotide variation in the two nonrepeated regions of the gene. We propose that this absence reflects a recent origin (within several thousand years) of the world populations of P. falciparum from a single individual; the amino acid polymorphisms observed in these nonrepeat regions would result from strong natural selection. Analysis of these polymorphisms indicates that: (i) the incidence of recombination events does not increase with nucleotide distance; (ii) the strength of linkage disequilibrium between nucleotides is also independent of distance; and (iii) haplotypes in the two nonrepeat regions are correlated with one another, but not with the central repeat region they span. We propose two hypotheses: (i) variation in the highly polymorphic central repeat region arises by mitotic intragenic recombination, and (ii) the population structure of P. falciparum is clonal—a state of affairs that persists in spite of the necessary stage of physiological sexuality that the parasite must sustain in the mosquito vector to complete its life cycle.