974 resultados para Organization of space
Resumo:
Primary olfactory axons expressing different odorant receptors are interspersed within the olfactory nerve. However, upon reaching the outer nerve fiber layer of the olfactory bulb they defasciculate, sort out, and refasciculate prior to targeting glomeruli in fixed topographic positions. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear what directs the formation of the nerve fiber and glomerular layers of the olfactory bulb. While the olfactory bulb itself may provide instructive cues for the development of these layers, it is also possible that the incoming axons may simply require the presence of a physical scaffold to establish the outer laminar cytoarchitecture. In order to begin to understand the underlying role of the olfactory bulb in development of the outer layers of the olfactory bulb, we physically ablated the olfactory bulbs in OMP-IRES-LacZ and P2-IRES-tau-LacZ neonatal mice and replaced them with artificial biological scaffolds molded into the shape of an olfactory bulb. Regenerating axons projected around the edge of the cranial cavity at the periphery of the artificial scaffold and were able to form an olfactory nerve fiber layer and, to some extent, a glomerular layer. Our results reveal that olfactory axons are able to form rudimentary cytoarchitectonic layers if they are provided with an appropriately shaped biological scaffold. Thus, the olfactory bulb does not appear to provide any tropic substance that either attracts regenerating olfactory axons into the cranial cavity or induces these axons to form a plexus around its outer surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The current global development project appears to be premised on the assumption that underlying political debates over development have been settled. An upshot of this is that development is reduced to the theoretical, ideological and legal framework of a neo-liberal political order. However, implicit, and sometimes explicit, political dynamics of development can be rendered from a perspective that foregrounds social struggles. I offer a political analysis of the PRSP initiative by examining its evolution and implications considered within social and political contexts, and by specific reference to the 'poverty reduction' interventions that emerged in the 1980s. I argue that the PRSP initiative is best understood as the formation of a comprehensive extension of neo-liberal strategic responses that emerged in the 1980s. In this context, I discuss the example of microcredit schemes in relation to the PRSP process and demonstrate the analytical significance of micro-political social relations for political analyses of development. The approach I adopt reveals social struggles as relationally constitutive of formations of a hegemonic development discourse otherwise ostensibly rendered in de-contextualized terms. From the perspective of critical development analysis such struggles are the concrete expressions of the contradictions immanent to the dialectic of development through inequality and immiseration in the (re)production of social power.
Resumo:
This paper derives the performance union bound of space-time trellis codes in orthogonal frequency division multiplexing system (STTC-OFDM) over quasi-static frequency selective fading channels based on the distance spectrum technique. The distance spectrum is the enumeration of the codeword difference measures and their multiplicities by exhausted searching through all the possible error event paths. Exhaustive search approach can be used for low memory order STTC with small frame size. However with moderate memory order STTC and moderate frame size the computational cost of exhaustive search increases exponentially, and may become impractical for high memory order STTCs. This requires advanced computational techniques such as Genetic Algorithms (GAS). In this paper, a GA with sharing function method is used to locate the multiple solutions of the distance spectrum for high memory order STTCs. Simulation evaluates the performance union bound and the complexity comparison of non-GA aided and GA aided distance spectrum techniques. It shows that the union bound give a close performance measure at high signal-to-noise ratio (SNR). It also shows that GA sharing function method based distance spectrum technique requires much less computational time as compared with exhaustive search approach but with satisfactory accuracy.
Resumo:
Although the actin cytoskeleton and the translation machinery are considered to be separate cellular complexes, growing evidence supports overlapping regulation of the two systems. Because of its interaction with actin, the eukaryotic translation elongation factor 1A (eEF1A) is proposed to be a regulator or link between these processes. Using a genetic approach with the yeast Saccharomyces cerevisiae, specific regions of eEF1A responsible for actin interactions and bundling were identified. Five new mutations were identified along one face of eEF1A. Dramatic changes in cell growth, cell morphology, and actin cable and patch formation as well as a unique effect on total translation in strains expressing the F308L or S405P eEF1A mutant form were observed. The translation effects do not correlate with reduced translation elongation but instead include an initiation defect. Biochemical analysis of the eEF1A mutant forms demonstrated reduced actin-bundling activity in vitro. Reduced total translation and/or the accumulation of 80S ribosomes in strains with either a mutation or a null allele of genes encoding actin itself or actin-regulating proteins Tpm1p, Mdm20p, and Bnirp/Bni1p was observed. Our data demonstrate that eEF1A, other actin binding proteins, and actin mutants affect translation initiation through the actin cytoskeleton.
Resumo:
Recent studies have stressed the importance of ‘open innovation’ as a means of enhancing innovation performance. The essence of the open innovation model is to take advantage of external as well as internal knowledge sources in developing and commercialising innovation, so avoiding an excessively narrow internal focus in a key area of corporate activity. Although the external aspect of open innovation is often stressed, another key aspect involves maximising the flow of ideas and knowledge from different sources within the firm, for example through knowledge sharing via the use of cross-functional teams. A fully open innovation approach would therefore combine both aspects i.e. cross-functional teams with boundary-spanning knowledge linkages. This suggests that there should be complementarities between the use cross-functional teams with boundary-spanning knowledge linkages i.e. the returns to implementing open innovation in one innovation activity is should be greater if open innovation is already in place in another innovation activity. However, our findings – based on a large sample of UK and German manufacturing plants – do not support this view. Our results suggest that in practice the benefits envisaged in the open innovation model are not generally achievable by the majority of plants, and that instead the adoption of open innovation across the whole innovation process is likely to reduce innovation outputs. Our results provide some guidance on the type of activities where the adoption of a market-based governance structure such as open innovation may be most valuable. This is likely to be in innovation activities where search is deterministic, activities are separable, and where the required level of knowledge sharing is correspondingly moderate – in other words those activities which are more routinized. For this type of activity market-based governance mechanisms (i.e. open innovation) may well be more efficient than hierarchical governance structures. For other innovation activities where outcomes are more uncertain and unpredictable and the risks of knowledge exchange hazards are greater, quasi-market based governance structures such as open innovation are likely to be subject to rapidly diminishing returns in terms of innovation outputs.
Resumo:
Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographicmaps, and this topic remains an active focus of neurocomputational research. The representational capabilities and internal representations of the models are not well understood. Here, we rigorously analyze a generalization of the self-organizingmap (SOM) for processing sequential data, recursive SOM (RecSOM) (Voegtlin, 2002), as a nonautonomous dynamical system consisting of a set of fixed input maps. We argue that contractive fixed-input maps are likely to produce Markovian organizations of receptive fields on the RecSOM map. We derive bounds on parameter β (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed-input maps is guaranteed. Some generalizations of SOM contain a dynamic module responsible for processing temporal contexts as an integral part of the model. We show that Markovian topographic maps of sequential data can be produced using a simple fixed (nonadaptable) dynamic module externally feeding a standard topographic model designed to process static vectorial data of fixed dimensionality (e.g., SOM). However, by allowing trainable feedback connections, one can obtain Markovian maps with superior memory depth and topography preservation. We elaborate on the importance of non-Markovian organizations in topographic maps of sequential data. © 2006 Massachusetts Institute of Technology.
Resumo:
We investigate experimentally the fundamental characteristics of space-charge waves excited in a photorefractive crystal of Bi12SiO20. Features such as their transient rise and decay as well as their steady-state frequency response are investigated. Based on this, we find the dependence of the space-charge waves' quality factor on spatial frequency and electric-field biasing. The experimental findings are compared with the linear space-charge wave theory developed previously by Sturman et al. [J. Opt. Sec. Am. B 10, 1919 (1993)].
Resumo:
Speech comprises dynamic and heterogeneous acoustic elements, yet it is heard as a single perceptual stream even when accompanied by other sounds. The relative contributions of grouping “primitives” and of speech-specific grouping factors to the perceptual coherence of speech are unclear, and the acoustical correlates of the latter remain unspecified. The parametric manipulations possible with simplified speech signals, such as sine-wave analogues, make them attractive stimuli to explore these issues. Given that the factors governing perceptual organization are generally revealed only where competition operates, the second-formant competitor (F2C) paradigm was used, in which the listener must resist competition to optimize recognition [Remez et al., Psychol. Rev. 101, 129-156 (1994)]. Three-formant (F1+F2+F3) sine-wave analogues were derived from natural sentences and presented dichotically (one ear = F1+F2C+F3; opposite ear = F2). Different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, regardless of their amplitude characteristics. In contrast, F2Cs with constant frequency contours were completely ineffective. Competitor efficacy was not due to energetic masking of F3 by F2C. These findings indicate that modulation of the frequency, but not the amplitude, contour is critical for across-formant grouping.
Resumo:
We investigate experimentally the fundamental characteristics of space-charge waves excited in a photorefractive crystal of Bi12SiO20. Features such as their transient rise and decay as well as their steady-state frequency response are investigated. Based on this, we find the dependence of the space-charge waves' quality factor on spatial frequency and electric-field biasing. The experimental findings are compared with the linear space-charge wave theory developed previously by Sturman et al. [J. Opt. Sec. Am. B 10, 1919 (1993)].
Resumo:
A novel electrostatic precipitator CAROLA® is developed for collection of fine oil mists. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of space charge. The pilot precipitator was tested at different gas temperatures. It is shown that the increase of gas temperature changes the characteristics of the corona discharge and particle size distribution, especially for droplets sub-micron droplets. The CAROLA® precipitator was used for collection of oil mist from pyrolysis gases at the HALOCLEAN® plant. The flow rate of biomass in the HALOCLEAN® plant was 15-30 kg/h. The particle mass concentration in the raw gas was over 100 g/Nm. The operation voltage of the precipitator was 10-12 kV and corona current up to 0,1 mA. Single stage electrostatic precipitator ensured mass collection efficiency 97-99,5% for pyrolysis oil mist.