993 resultados para Organic mineral
Resumo:
There are a large number of boron-containing minerals, of which vonsenite is one. Some discussion about the molecular structure of vonsenite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of vonsenite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by two intense broad bands at 997 and 1059 cm−1 assigned to the BO stretching vibrational mode. A series of Raman bands in the 1200–1500 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. No Raman spectrum of water in the OH stretching region could be obtained. The infrared spectrum shows a series of overlapping bands with bands identified at 3037, 3245, 3443, 3556, and 3614 cm−1. It is important to understand the structure of vonsenite in order to form nanomaterials based on its structure. Vibrational spectroscopy enables a better understanding of the structure of vonsenite.
Resumo:
A natural single-crystal specimen of the kröhnkite from Chuquicamata, Chile, with the general formula Na2Cu(SO4)2 · 2H2O, was investigated by Raman and infrared spectroscopy. The mineral kröhnkite is found in many parts of the world's arid areas. Kröhnkite crystallizes in the monoclinic crystal system with point group 2/m and space group P21/c. It is an uncommon secondary mineral formed in the oxidized zone of copper deposits, typically in very arid climates. The Raman spectrum of kröhnkite dominated by a very sharp intense band at 992 cm−1 is assigned to the ν1 symmetric stretching mode and Raman bands at 1046, 1049, 1138, 1164, and 1177 cm−1 are assigned to the ν3 antisymmetric stretching vibrations. The infrared spectrum shows an intense band at 992 cm−1. The Raman bands at 569, 582, 612, 634, 642, 655, and 660 cm−1 are assigned to the ν4 bending modes. Three Raman bands observed at 429, 445, and 463 cm−1 are attributed to the ν2 bending modes. The observation that three or four bands are seen in the ν4 region of kröhnkite is attributed to the reduction of symmetry to C2v or less.
Resumo:
The metal lithium is very important in industry, including lithium batteries. An important source of lithium besides continental brines is granitic pegmatites as in Australia. Lithiophilite is a lithium and manganese phosphate with chemical formula LiMnPO4 and forms a solid solution with triphylite, its Fe analog, and belongs to the triphylite group that includes karenwebberite, natrophilite, and sicklerite. The mineral lithiophilite was characterized by chemical analysis and spectroscopic techniques. The chemical is: Li1.01(Mn0.60, Fe0.41, Mg0.01, Ca0.01)(PO4)0.99 and corresponds to an intermediate member of the triphylite-lithiophilite series, with predominance of the lithiophilite member. The mineral lithiophilite is readily characterized by Raman and infrared spectroscopy.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.
Resumo:
In this Account we have compiled a list of reliable bond energies that are based on a set of critically evaluated experiments. A brief description of the three most important experimental techniques for measuring bond energies is provided. We demonstrate how these experimental data can be applied to yield the heats of formation of organic radicals and the bond enthalpies of more than 100 representative organic molecules.
Resumo:
Methanesulfonic acid (MSA) was compared with sulfuric acid for the conversion of glucose and xylose mixtures to produce levulinic acid and furfural. The interactions of glucose and xylose, the predominant sugars found in biomass, were found to influence product yields with furfural degradation reactions enhanced under higher reactant loadings. Fast heating rates allowed maximal yields (>60 mol%) of levulinic acid and furfural to be achieved under short reaction times. Under the range of conditions examined, sulfuric acid produced a slight increase in levulinic acid yield by 6% (P = 0.02), although there was no significant difference (P = 0.11) between MSA and sulfuric acid in levulinic acid formed from glucose alone. The amount and type of the solid residue is similar between MSA and sulfuric acid. As such, MSA is a suitable alternative because its use minimizes corrosion and disposal issues associated with mineral acid catalysts. The heating value of the residue was 22 MJ/kg implying that it is a suitable source of fuel. On the basis of these results, a two-stage processing strategy is proposed to target high levulinic acid and furfural yields, and other chemical products (e.g., lactic acid, xylitol, acetic acid and formic acid). This will result in full utilization of bagasse components.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.
Resumo:
The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12•26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990 cm−1 is assigned to the SO42− symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069 cm−1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107 cm−1 assigned to the SO42− antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3479 cm−1 to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.
Resumo:
We have studied aspect of the molecular structure of the phosphate mineral rimkorolgite from Zheleznyi iron mine, Kovdor massif, Kola Peninsula, Russia, using SEM with EDX and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by P, Mg, Ba, Mn and Ca. Small amounts of Si were also observed. An intense Raman peak at 975 cm−1 is assigned to the PO43− ν1 symmetric stretching mode. The Raman band at 964 cm−1 is attributed to the HPO42− ν1 symmetric stretching vibration. Raman bands observed at 1016, 1035, 1052, 1073, 1105 and 1135 cm−1 are attributed to the ν3 antisymmetric stretching vibrations of the HPO42− and PO43− units. Complexity in the spectra of the phosphate bending region is observed. The broad Raman band at 3272 cm−1 is assigned to the water stretching vibration. Vibrational spectroscopy enables aspects on the molecular structure of rimkorolgite to be undertaken.
Resumo:
We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm−1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm−1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm−1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm−1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm−1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.
Resumo:
We have studied the mineral takedaite Ca3(BO3)2, a borate mineral of calcium using SEM with EDX and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed of Ca. Boron was not detected. A very intense Raman band at 1087 cm−1 is assigned to the BO stretching vibration of BO3 units. Additional Raman bands may be due to isotopic splitting. In the infrared spectrum, bands at 1218 cm−1 and at 1163, 1262 and 1295 cm−1 are assigned to the trigonal borate stretching modes. Raman bands at 712 and 715 cm−1 are assigned to the in-plane bending modes of the BO3 units. Vibrational spectroscopy enables aspects of the molecular structure of takedaite to be assessed.
Resumo:
In organic-inorganic nanocomposites, interfacial regions are primarily influenced by the dispersion uniformity of nanoparticles and the strength of interfacial bonds between the nanoparticles and the polymer matrix. The insulating performance of organic-inorganic dielectric nanocomposites is highly influenced by the characteristics of interfacial regions. In this study, we prepare polyethylene oxide (PEO)-like functional layers on silica nanoparticles through plasma polymerization. Epoxy resin/silica nanocomposites are subsequently synthesized with these plasma-polymerized nanoparticles. It is found that plasma at a low power (i.e., 10 W) can significantly increase the concentration of C-O bonds on the surface of silica nanoparticles. This plasma polymerized thin layer can not only improve the dispersion uniformity by increasing the hydrophilicity of the nanoparticles, but also provide anchoring sites to enable the formation of covalent bonds between the organic and inorganic phases. Furthermore, electrical tests reveal improved electrical treeing resistance and decreased dielectric constant of the synthesized nanocomposites, while the dielectric loss of the nanocomposites remains unchanged as compared to the pure epoxy resin.
Resumo:
Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.