976 resultados para Optical elements
Resumo:
A new postcracking formulation for concrete, along with both implicit and explicit layering procedures, is used in the analysis of reinforced-concrete (RC) flexural and torsional elements. The postcracking formulation accounts for tension stiffening in concrete along the rebar directions, compression softening in cracked concrete based on either stresses or strains, and aggregate interlock based on crack-confining normal stresses. Transverse shear stresses computed using the layering procedures are included in material model considerations that permit the development of inclined cracks through the RC cross section. Examples of a beam analyzed by both the layering techniques, a torsional element, and a column-slab connection region analyzed by the implicit layering procedure are presented here. The study highlights the primary advantages and disadvantages of each layering approach, identifying the class of problems where the application of either procedure is more suitable.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
We report the structural and optical properties of a-plane GaN film grown on r-plane sapphire substrate by plasma-assisted molecular beam epitaxy. High resolution X-ray diffraction was used to determine the out-of-plane and in-plane epitaxial relation of a-plane GaN to r-plane sapphire. Low-temperature photoluminescence emission was found to be dominated by basal stacking faults along with near-band emission. Raman spectroscopy shows that the a-GaN film is of reasonably good quality and compressively strained. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Two donor acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 x 10(12) eV(-1) cm(-2) in TDPP-BBT and 3.5 x 10(12) eV(-1) cm(-2) in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10(-3) cm(2)/(V s). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.
Resumo:
Optical UBVRI photometry and medium-resolution spectroscopy of the Type Ib supernova SN 2009jf, during the period from similar to -15 to +250 d, with respect to the B maximum are reported. The light curves are broad, with an extremely slow decline. The early post-maximum decline rate in the V band is similar to SN 2008D; however, the late-phase decline rate is slower than other Type Ib supernovae studied. With an absolute magnitude of M-V = -17.96 +/- 0.19 at peak, SN 2009jf is a normally bright supernova. The peak bolometric luminosity and the energy deposition rate via the 56Ni -> 56Co chain indicate that similar to 0.17+0.03(-0.03) M-circle dot of 56Ni was ejected during the explosion. The He i 5876 A line is clearly identified in the first spectrum of day similar to -15, at a velocity of similar to 16 000 km s-1. The O i] 6300-6364 A line seen in the nebular spectrum has a multipeaked and asymmetric emission profile, with the blue peak being stronger. The estimated flux in this line implies that greater than or similar to 1.34 M-circle dot oxygen was ejected. The slow evolution of the light curves of SN 2009jf indicates the presence of a massive ejecta. The high expansion velocity in the early phase and broader emission lines during the nebular phase suggest it to be an explosion with a large kinetic energy. A simple qualitative estimate leads to the ejecta mass of M-ej = 4-9 M-circle dot and kinetic energy E-K = 3-8 x 1051 erg. The ejected mass estimate is indicative of an initial main-sequence mass of greater than or similar to 20-25 M-circle dot.
Resumo:
Optical and structural properties of reactive ion beam sputter deposited CeO2 films as a function of oxygen partial pressures (P-O2) and substrate temperatures (T-s) have been investigated. The films deposited at ambient temperature with P-O2 of 0.01 Pa have shown a refractive index of 2.36 which increased to 2.44 at 400 degrees C. Refractive index and extinction coefficient are sensitive up to a T-s of similar to 200 degrees C. Raman spectroscopy and X-ray diffraction (XRD) have been used to characterise the structural properties. A preferential orientation of (220) was observed up to a T-s of 200 degrees C and it changed to (200) at 400 degrees C: and above. Raman line broadening, peak shift and XRD broadening indicate the formation of nanocrystalline phase for the films deposited up to a substrate temperature of 300 degrees C. However, crystallinity of the films were better for T-s values above 300 degrees C. In general both optical and structural properties were unusual compared to the films deposited by conventional electron beam evaporation, but were similar in some aspects to those deposited by ion-assisted deposition. Apart from thermal effects, this behavior is also attributed to the bombardment of backscattered ions/neutrals on the growing film as well as the higher kinetic energy of the condensing species, together resulting in increased packing density. (C) 1997 Elsevier Science S.A.
Resumo:
Transient thermal sensitivity is studied for systems that are subjected to conductive heat transfer within themselves and radiative heat transfer with the surrounding environment, including solar heat radiation, The battery in the Indian national communication satellite is one such system for which the studies are conducted with respect to panel conduction, conductance of insulating blanket, power dissipation within the battery, and absorptance and emittance of various elements, Comparison of sensitivities revealed that battery temperature is sensitive to its power dissipation during the beginning of life of the spacecraft, whereas toward the end of life of the spacecraft mission, the effect of absorptance of optical solar reflector is dominating, The influence of optical property values of the multilayer insulation blanket is almost negligible. Among the parameters studied in this analysis, the battery temperature is found to be mast sensitive to emittance of the optical solar reflector.
Resumo:
We study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail (HtT) configurations, at different stacking angles within the Pariser-Parr-Pople model using exact diagonalization method. By varying the stacking angle between the polyenes, we find that the optical gap varies marginally, but transition dipoles show large variations. We find that the dominant first-order hyperpolarizability component beta(XXX) for HtH arrangement and beta(YYY) for HtT arrangement strongly depend on the distance of separation between molecules, while the other smaller component beta(XYY) for HtH arrangement and beta(XXY) for HtT arrangement) does not show this variation with distance. We find that the beta(XXX) for HtH configuration shows a maximum at an angle away from 0, in contrast with the oriented gas model. This angle varies with distance between the polyenes, and at large distance it falls to 0. The ratio of all components of beta of a dimer to monomer is less than two for HtH configuration for all angles. But for HtT configurations the ratio of the dominant beta component is greater than two at large angles. Our ZINDO study on two monomers (4-hydroxy-4'-nitroazobenzene) connected in a nonconjugative fashion shows a linear increase in vertical bar(beta) over right arrow (av)vertical bar without much red shift in optical gap. There is a linear increase in vertical bar(beta) over right arrow (av)vertical bar with increase in number of monomers connected nonconjugatively without resulting in a red shift in optical gap.
Resumo:
We describe here two non-interferometric methods for the estimation of the phase of transmitted wavefronts through refracting objects. The phase of the wavefronts obtained is used to reconstruct either the refractive index distribution of the objects or their contours. Refraction corrected reconstructions are obtained by the application of an iterative loop incorporating digital ray tracing for forward propagation and a modified filtered back projection (FBP) for reconstruction. The FBP is modified to take into account non-straight path propagation of light through the object. When the iteration stagnates, the difference between the projection data and an estimate of it obtained by ray tracing through the final reconstruction is reconstructed using a diffraction tomography algorithm. The reconstruction so obtained, viewed as a correction term, is added to the estimate of the object from the loop to obtain an improved final refractive index reconstruction.
Resumo:
Differently hydrated sodium p-nitrophenolate (NPNa) crystals were obtained while growing them from different solvents such as methanol and water. Thermal analysis and powder X-ray diffraction studies were carried out on these crystals. Kurtz powder SHG technique was used for qualitative assessment of their nonlinear optical (NLO) activity. From the detailed single-crystal X-ray diffraction studies it is established that NPNa has three different forms, of which only one is found to possess NLO activity. Additionally, a new NLO active crystal was also found to grow from aqueous solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A new series of twin nonlinear optical (NLO) molecules, having two 4-nitrophenol chromophores that are linked via a flexible polymethylene spacer of varying length [(CH2)(n), n = 1-12], were synthesized. Powder second harmonic generation measurements of these twin samples indicated a pronounced odd-even oscillation, with the odd twins exhibiting a high SHG value while the even ones gave no measurable SH signal. This behavior reflects the crystal packing preferences in such twin NLO systems that have odd and even numbers of atoms linking them - the even ones appear to prefer a centrosymmetric packing arrangement. The orientational/disordering dynamics of these twin NLO molecules, doped in a polymer (poly(methyl methacrylate)) matrix, has also been studied using SHG in electric field poled samples. Interestingly, the maximum attainable SH signal, chi((2)), in, the poled samples also showed an odd-even oscillation; the odd ones again having a higher value of chi((2)) This unprecedented odd-even oscillation in such molecularly doped systems is rationalized as being due to the intrinsically greater ease of a parallel alignment of the two chromophores in the twins with an odd spacer than in those with an even one. Further, the temporal stability of the SHG intensity at 70 degrees C, after the removal of the applied corona, was also studied. The relaxation of all the twin chromophores followed a biexponential decay; the characteristic relaxation time (tau(2)) for the slow decay component suggests that while the twin with a single methylene unit relaxes relatively slowly, the relaxation is significantly faster in cases where n = 2 and 3. In the twins with even longer spacer segments, the relaxation again becomes slower and reaches a saturation value. The observed minimum appears to reflect the interplay of two competing factors that affect the chromophore alignment in such twin systems, namely, the electrostatic repulsion between neighboring oriented dipoles and the intrinsic flexibility of the spacer.
Resumo:
Glasses in the system (1 - x)Li2B4O7-xBi(2)WO(6) (0.1 less than or equal to x less than or equal to 0.35) were prepared by splat quenching technique. Powder X-ray diffraction (XRD) and differential thermal analysis (DTA) were employed to characterize the as-quenched glasses. High-resolution transmission electron microscopy (HR TEM) revealed the presence of fine, nearly spherical crystallites of Bi2WO6 varying from 1.5 to 20 nm in size, depending on x in the as-quenched glasses. The glasses (corresponding to x = 0.3) heat-treated at 723 K for 6 h gave rise to a clear crystalline phase of Bi2WO6 embedded in the Li2B4O7 glass matrix, as observed by X-ray studies. The dielectric constants of the as-quenched glasses as well as the glass-ceramics decreased with increase in frequency (40Hz-100 kHz) at 300 K, and the value obtained for the glass-ceramic (x = 0.2) is in agreement with the values predicted using Maxwell's model and the logarithmic mixture rule. The dielectric constants for both the as-quenched glass and the glass-ceramic increased with increase in temperature (300 - 873 K) and exhibited anomalies close to the onset of the crystallization temperature of the host glass matrix. The optical transmission properties:of these glass-ceramics were found to be compositional dependant. (C) 2000 Elsevier Science Ltd.
Resumo:
Glass samples with compositions (100-2x)SrB4O7-xBaO-xTiO(2) (10 less than or equal to x less than or equal to 40) were prepared by conventional melt quenching and the influence of the addition of BaO-TiO2 on the structural, dielectric and optical properties of SBO glasses was studied The molar volume, glass transition temperature and the optical polarisability of the glass samples were found to decrease with increase in BaO-TiO2 content while the refractive index and optical band gap increase with increase in BaO-TiO2 content.
Resumo:
Two methods based on wavelet/wavelet packet expansion to denoise and compress optical tomography data containing scattered noise are presented, In the first, the wavelet expansion coefficients of noisy data are shrunk using a soft threshold. In the second, the data are expanded into a wavelet packet tree upon which a best basis search is done. The resulting coefficients are truncated on the basis of energy content. It can be seen that the first method results in efficient denoising of experimental data when scattering particle density in the medium surrounding the object was up to 12.0 x 10(6) per cm(3). This method achieves a compression ratio of approximate to 8:1. The wavelet packet based method resulted in a compression of up to 11:1 and also exhibited reasonable noise reduction capability. Tomographic reconstructions obtained from denoised data are presented. (C) 1999 Published by Elsevier Science B.V. All rights reserved,