942 resultados para Operating costs.
Resumo:
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model. However, it seems well suited to sensitivity calculations about a baseline. Copyright © 1999 Society of Automotive Engineers, Inc.
Resumo:
Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with 235U is necessary, and the 235U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO
Resumo:
The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.
Resumo:
The viability of boundary layer ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60 deg inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect that occurs throughout the annulus despite the localized nature of the inlet distortion. Increased loss in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. © 2013 by ASME.
Resumo:
This work initiated the development of operating envelopes for stabilised/solidified contaminated soils. The operating envelopes define the range of operating variables for acceptable performance of the treated soils. The study employed a soil spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. The binders used for treatment involved Portland cement (CEMI), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS) and hydrated lime (hlime). The specific binder formulations were CEMI, CEMI/PFA = 1:4, CEMI/GGBS = 1:9 and hlime/GGBS = 1:4. The water contents employed ranged from 13 % to 21 % (dry weight), while binder dosages ranged from 5 % to 20 % (w/w). We monitored the stabilised/solidified soils for up to 84 days using different performance tests. The tests include unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. The water content range resulted in adequate workability of the mixes but had no significant effect on leachability of contaminants. We produced design charts, representing operating envelopes, from the results generated. The charts establish relationships between water content, binder dosage and UCS; and binder dosage, leachant pH and leachability of contaminants. The work also highlights the strengths and weaknesses of the different binder formulations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Interspecific symbiotic relationships involve a complex network of interactions, and understanding their outcome requires quantification of the costs and benefits to both partners. We experimentally investigated the costs and benefits in the relationship between European bitterling fish (Rhodeus sericeus) and freshwater mussels that are used by R. sericeus for oviposition. This relationship has hitherto been thought mutualistic, on the premise that R. sericeus use mussels as foster parents of their embryos while mussels use R. sericeus as hosts for their larvae. We demonstrate that R. sericeus is a parasite of European mussels, because it (i) avoids the cost of infection by mussel larvae and (ii) imposes a direct cost on mussels. Our experiments also indicate a potential coevolutionary arms race between bitterling fishes and their mussel hosts; the outcome of this relationship may differ between Asia, the centre of distribution of bitterling fishes, and Europe where they have recently invaded.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.
Resumo:
A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 mu m has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0. 16 A/W at the resonance wavelength of 1.55 mu m have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on the material growth and device performance characterization of a strain-compensated In0.54Ga0.46As/In0.51Al0.49As quantum cascade laser at lambda similar to 8 mu m. For 2 mu s pulse at a 5 kHz repetition rate, laser action is achieved up to room temperature (30 degrees C). The tuning coefficient d lambda/dT is 1.37 nm K-1 between 83 K and 163 K and 0.60 nm K-1 in the range from 183 K to 303 K. The peak output power is reported to be similar to 11.3 mW per facet at 293 K and the corresponding threshold current density is 5.69 kA cm(-2).
Resumo:
X-ray diffraction, as an effective probe and simple method, is used to ascertain the precise control of the epilayer thickness and composition. Intersubband absorption from the whole structure of the QC laser is used to monitor the wavelength of the QC laser and the material quality. Path for growth of high-quality InP-based InGaAs/InAlAs quantum cascade laser material is realized. The absorption between two quantized energy levels is achieved at similar to4.7 mum. Room temperature laser action is achieved at lambda approximate to 5.1 - 5.2 mum. For some devices, if the peak output power is kept at 2 mW, quasi-continuous wave operation at room temperature can persist for more than I It. (C) 2002 Elsevier Science B.V. All rights reserved.