940 resultados para Object Oriented Programming (Computing)
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
La tesi è calata nell'ambito dell'Aggregate Programming e costituita da una prima parte introduttiva su questo ambito, per poi concentrarsi sulla descrizione degli elaborati prodotti e infine qualche nota conclusiva unitamente a qualche possibile sviluppo futuro. La parte progettuale consiste nell'integrazione del framework Scafi con il simulatore Alchemist e con una piattaforma di creazione e di esecuzione di sistemi in ambito Spatial Computin, con lo scopo di potenziare la toolchain esistente per Aggregate Programming. Inoltre si riporta anche un breve capitolo per l'esecuzione del framework scafi sviluppato in scala sulla piattaforma Android.
Resumo:
Der CampusSource Workshop fand vom 10. bis 12. Oktober 2006 an der Westfälischen Wilhelms Universität (WWU) in Münster statt. Kernpunkte der Veranstaltung waren die Entwicklung einer Engine zur Verknüpfung von e-Learning Anwendungen mit Systemen der HIS GmbH und die Erstellung von Lehr- und Lerninhalten mit dem Ziel der Wiederverwendung. Im zweiten Kapitel sind Vorträge der Veranstaltung im Adobe Flash Format zusammengetragen. Zur Betrachtung der Vorträge ist der Adobe Flash Player, mindestens in der Version 6 erforderlich
Resumo:
Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
The investigator conducted an action-oriented investigation of pregnancy and birth among the women of Mesa los Hornos, an urban squatter slum in Mexico City. Three aims guided the project: (1) To obtain information for improving prenatal and maternity service utilization; (2) To examine the utility of rapid ethnographic and epidemiologic assessment methodologies; (3) To cultivate community involvement in health development.^ Viewing service utilization as a culturally-bound decision, the study included a qualitative phase to explore women's cognition of pregnancy and birth, their perceived needs during pregnancy, and their criteria of service acceptability. A probability-based community survey delineated parameters of service utilization and pregnancy health events, and probed reasons for decisions to use medical services, lay midwives, or other sources of prenatal and labor and delivery assistance. Qualitative survey of service providers at relevant clinics, hospitals, and practices contributed information on service availability and access, and on coordination among private, social security, and public assistance health service sectors. The ethnographic approach to exploring the rationale for use or non-use of services provided a necessary complement to conventional barrier-based assessment, to inform planning of culturally appropriate interventions.^ Information collection and interpretation was conducted under the aegis of an advisory committee of community residents and service agency representatives; the residents' committee formulated recommendations for action based on findings, and forwarded the mandate to governmental social and urban development offices. Recommendations were designed to inform and develop community participation in health care decision-making.^ Rapid research methods are powerful tools for achieving community-based empowerment toward investigation and resolution of local health problems. But while ethnography works well in synergy with quantitative assessment approaches to strengthen the validity and richness of short-term field work, the author strongly urges caution in application of Rapid Ethnographic Assessments. An ethnographic sensibility is essential to the research enterprise for the development of an active and cooperative community base, the design and use of quantitative instruments, the appropriate use of qualitative techniques, and the interpretation of culturally-oriented information. However, prescribed and standardized Rapid Ethnographic Assessment techniques are counter-productive if used as research short-cuts before locale- and subject-specific cultural understanding is achieved. ^
Resumo:
We show a method for parallelizing top down dynamic programs in a straightforward way by a careful choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic program computes its subproblems. This generic approach is applied to dynamic programs for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for minimizing the máximum number of open stacks. Experimental results are provided on three different modern multicore architectures which show that this parallelization is effective and reasonably scalable. In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem.
Resumo:
The increasing complexity of current software systems is encouraging the development of self-managed software architectures, i.e. systems capable of reconfiguring their structure at runtime to fulfil a set of goals. Several approaches have covered different aspects of their development, but some issues remain open, such as the maintainability or the scalability of self-management subsystems. Centralized approaches, like self-adaptive architectures, offer good maintenance properties but do not scale well for large systems. On the contrary, decentralized approaches, like self-organising architectures, offer good scalability but are not maintainable: reconfiguration specifications are spread and often tangled with functional specifications. In order to address these issues, this paper presents an aspect-oriented autonomic reconfiguration approach where: (1) each subsystem is provided with self-management properties so it can evolve itself and the components that it is composed of; (2) self-management concerns are isolated and encapsulated into aspects, thus improving its reuse and maintenance. Povzetek: Predstavljen je pristop s samo-preoblikovanjem programske arhitekture.
Resumo:
Service-Oriented Architectures (SOA), and Web Services (WS), the technology generally used to implement them, achieve the integration of heterogeneous technologies, providing interoperability, and yielding the reutilization of pre-existent systems. Model-driven development methodologies provide inherent benefits such as increased productivity, greater reuse, and better maintainability, to name a few. Efforts on achieving model-driven development of SOAs already exist, but there is currently no standard solution that addresses non-functional aspects of these services as well. This paper presents an approach to integrate these non-functional aspects in the development of web services, with an emphasis on security.
Resumo:
Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic programming (and more recently, constraint programming) resulting in quite capable parallelizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
Desde los inicios de la codificación de vídeo digital hasta hoy, tanto la señal de video sin comprimir de entrada al codificador como la señal de salida descomprimida del decodificador, independientemente de su resolución, uso de submuestreo en los planos de diferencia de color, etc. han tenido siempre la característica común de utilizar 8 bits para representar cada una de las muestras. De la misma manera, los estándares de codificación de vídeo imponen trabajar internamente con estos 8 bits de precisión interna al realizar operaciones con las muestras cuando aún no se han transformado al dominio de la frecuencia. Sin embargo, el estándar H.264, en gran auge hoy en día, permite en algunos de sus perfiles orientados al mundo profesional codificar vídeo con más de 8 bits por muestra. Cuando se utilizan estos perfiles, las operaciones efectuadas sobre las muestras todavía sin transformar se realizan con la misma precisión que el número de bits del vídeo de entrada al codificador. Este aumento de precisión interna tiene el potencial de permitir unas predicciones más precisas, reduciendo el residuo a codificar y aumentando la eficiencia de codificación para una tasa binaria dada. El objetivo de este Proyecto Fin de Carrera es estudiar, utilizando las medidas de calidad visual objetiva PSNR (Peak Signal to Noise Ratio, relación señal ruido de pico) y SSIM (Structural Similarity, similaridad estructural), el efecto sobre la eficiencia de codificación y el rendimiento al trabajar con una cadena de codificación/descodificación H.264 de 10 bits en comparación con una cadena tradicional de 8 bits. Para ello se utiliza el codificador de código abierto x264, capaz de codificar video de 8 y 10 bits por muestra utilizando los perfiles High, High 10, High 4:2:2 y High 4:4:4 Predictive del estándar H.264. Debido a la ausencia de herramientas adecuadas para calcular las medidas PSNR y SSIM de vídeo con más de 8 bits por muestra y un tipo de submuestreo de planos de diferencia de color distinto al 4:2:0, como parte de este proyecto se desarrolla también una aplicación de análisis en lenguaje de programación C capaz de calcular dichas medidas a partir de dos archivos de vídeo sin comprimir en formato YUV o Y4M. ABSTRACT Since the beginning of digital video compression, the uncompressed video source used as input stream to the encoder and the uncompressed decoded output stream have both used 8 bits for representing each sample, independent of resolution, chroma subsampling scheme used, etc. In the same way, video coding standards force encoders to work internally with 8 bits of internal precision when working with samples before being transformed to the frequency domain. However, the H.264 standard allows coding video with more than 8 bits per sample in some of its professionally oriented profiles. When using these profiles, all work on samples still in the spatial domain is done with the same precision the input video has. This increase in internal precision has the potential of allowing more precise predictions, reducing the residual to be encoded, and thus increasing coding efficiency for a given bitrate. The goal of this Project is to study, using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) objective video quality metrics, the effects on coding efficiency and performance caused by using an H.264 10 bit coding/decoding chain compared to a traditional 8 bit chain. In order to achieve this goal the open source x264 encoder is used, which allows encoding video with 8 and 10 bits per sample using the H.264 High, High 10, High 4:2:2 and High 4:4:4 Predictive profiles. Given that no proper tools exist for computing PSNR and SSIM values of video with more than 8 bits per sample and chroma subsampling schemes other than 4:2:0, an analysis application written in the C programming language is developed as part of this Project. This application is able to compute both metrics from two uncompressed video files in the YUV or Y4M format.